TABLE OF CONTENTS

Introduction .. 1
Intended Use of Excel Modular Scaffold ... 2
Glossary of Terms ... 3

BASES

- Excel Modular Screw Jack .. 4
- Excel Modular Swivel Jack .. 5
- Excel Modular Caster ... 6
- Excel Modular Walk-Thru Base Plate ... 7
- Excel Modular Safety Outrigger ... 8

VERTICAL POSTS

- Excel Modular Vertical Post .. 9

HORIZONTAL BARS

- Excel Modular Horizontal Bar .. 11
- Bracing Excel Horizontal Bars .. 15
- Excel Modular Horizontal Bar with One (1) Brace ... 16
- Excel Modular Adjustable Bearer .. 18

TRUSSES

- Excel Modular Truss .. 22
- Excel Modular Truss Maximum Allowable Load ... 25
- 18' Truss (1996–2010, Run 1–Run 45) .. 26
- 16' Truss (1996–2010, Run 1–Run 45) .. 27
- 14' Truss (1996–2010, Run 1–Run 45) .. 28
- 12' Truss (1996–2010, Run 1–Run 45) .. 29
- 18' Truss (2011–Current, Run 46–Run 60) ... 30
- 16' Truss (2011–Current, Run 46–Run 60) ... 31
- 14' Truss (2011–Current, Run 46–Run 60) ... 32
- 12' Truss (2011–Current, Run 46–Run 60) ... 33

BRACING

- Excel Modular Diagonal Swivel Brace ... 34
- Excel Modular Diagonal Pin Brace .. 35
- Excel Modular Diagonal Combination Brace ... 37
- Excel Modular Diagonal Extendable Brace .. 38
- Excel Modular Right-Angle Brace ... 39
- Excel Modular Scaffold General Guidelines For Bracing 40
TABLE OF CONTENTS (CONT’D)

SIDE BRACKETS
- Excel Modular Board Bracket and Side Bracket ... 42
- Excel Modular Side Bracket and Cantilever Deck Loading 45
- Excel Modular Side Bracket and Cantilever Max Deck Loading 46
- Excel Modular Folding Side Bracket .. 47
- Excel Modular Folding Side Bracket Installation .. 48
- Excel Modular Folding Side Bracket Loading ... 51

INTERMEDIATE HORIZONTAL ADAPTERS
- Intermediate and Heavy-Duty Intermediate Horizontal Adapters 52
- Excel Locking Intermediate Horizontal Adapter ... 53
- Bracing Excel Horizontal Bars with Locking Intermediate Horizontal Adapter 54
- Excel Modular Horizontal Bar with Locking Intermediate Horizontal Adapter Center Brace 55
- Intermediate Horizontal Adapter With Clamp ... 56

DECKING
- Excel Modular Steel Planks .. 57
- Excel Modular Filler Plates ... 58
- Excel Modular Wood Planks .. 59

LADDERS/STAIRS
- Excel Modular Ladder ... 61
- Excel Modular Ladder Brackets ... 62
- Excel Modular Ladder Installation ... 63
- Excel Modular Snow Ladder ... 64
- Excel Modular Stair System ... 65

SAFETY GATES
- Excel Modular Safety Gate ... 66
- Excel Modular Adjustable Safety Gates ... 67
- Excel Modular Safety Gate Handrail .. 68

TOE BOARDS
- Excel Modular Toe Board Assembly .. 69
- Excel Modular Aluminum Toe Board .. 70

TUBE AND CLAMP APPLICATION
- Excel Modular Scaffold Used with Tube and Clamp 71
- Hanging/Suspended Scaffold ... 74
- Excel Modular Clean Verticals .. 81
TABLE OF CONTENTS (CONT’D)

LIFTING RIG
- Excel Modular Truss Used as a Lifting Rig .. 82
- Guidelines for Lifting Rigs ... 83
- Lifting and Moving Racked Material .. 84

MATERIAL TRANSPORT
- Excel Modular Rope Hoist .. 85
- Excel Modular Scaffold Cart .. 86

TIE-OFF/ANCHORAGE POINTS
- Using Excel Modular Scaffolding as a Fall Protection Anchorage Point 87
- Horizontal Tie-Off Support .. 92
- Proper Installation of Horizontal Tie-Off Support .. 93

STORAGE RACKS
- Excel Modular Square Steel Rack ... 94
- Excel Modular Steel Board Rack .. 95
- Excel Modular Horizontal Rack ... 96
- Excel Modular Horizontal Rack Support Foot ... 97
- Excel Modular Scaffold Folding Wire Basket .. 98

ADDITIONAL INFORMATION
- OSHA Compliance of Excel Modular Scaffold .. 99
- Excel Building Tips .. 103
- Code of Safe Practices for Excel Modular Scaffold ... 107
- Scaffold Industry Association Code of Safe Practices .. 108
- Scaffold Inspection Guidelines .. 112
- Repair Guidelines That Must be Followed by Excel End-Users 116
- Scaffold Material Loading and Shipping Guidelines .. 117
- Material Racking Guide .. 120
- General Assembly Instructions .. 121
TABLE OF CONTENTS (CONT’D)

CUSTOM AND SPECIALTY COMPONENTS

The following components can be found in the Excel Modular Scaffold Custom and Specialty Component Technical Manual.

Click here to view the Custom and Specialty Component Manual

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Intended Use of Excel Modular Scaffold</td>
<td>2</td>
</tr>
<tr>
<td>VERTICALS & ACCESSORIES</td>
<td></td>
</tr>
<tr>
<td>Excel Modular Vertical Leg Hanging Bracket</td>
<td>3</td>
</tr>
<tr>
<td>Excel Modular Adjustable Tube and Clamp Adapter</td>
<td>4</td>
</tr>
<tr>
<td>Lifting and Moving Excel Modular Scaffold Structures</td>
<td>5</td>
</tr>
<tr>
<td>Excel Modular Heavy-Duty Lifting Device with Strap</td>
<td>6</td>
</tr>
<tr>
<td>Excel Modular Heavy-Duty Lifting Device with Lug</td>
<td>7</td>
</tr>
<tr>
<td>Excel Modular Roof Adapter</td>
<td>8</td>
</tr>
<tr>
<td>Excel Modular Counterweight Base Plate</td>
<td>9</td>
</tr>
<tr>
<td>BOILER COMPONENTS</td>
<td>11</td>
</tr>
<tr>
<td>DECKING MATERIAL</td>
<td></td>
</tr>
<tr>
<td>Excel Modular Aluminum Plank</td>
<td>12</td>
</tr>
<tr>
<td>Excel Modular Grating Plank</td>
<td>13</td>
</tr>
<tr>
<td>Excel Modular Duckbill Steel Plank</td>
<td>14</td>
</tr>
<tr>
<td>ACCESS EQUIPMENT</td>
<td></td>
</tr>
<tr>
<td>Excel Modular Ladder Cage</td>
<td>15</td>
</tr>
<tr>
<td>Excel Modular Rapid Access System</td>
<td>16</td>
</tr>
<tr>
<td>Excel Modular Landing Hatchway</td>
<td>19</td>
</tr>
<tr>
<td>Excel Modular Aluminum Ladder</td>
<td>20</td>
</tr>
<tr>
<td>Excel Modular Aluminum Stair System</td>
<td>21</td>
</tr>
<tr>
<td>Excel Modular Aluminum Safety Gate Toe Board</td>
<td>22</td>
</tr>
<tr>
<td>Excel Modular Elevator Strut Assembly</td>
<td>23</td>
</tr>
<tr>
<td>CLAMPS</td>
<td></td>
</tr>
<tr>
<td>Excel Modular Big Swivel Clamp</td>
<td>24</td>
</tr>
<tr>
<td>Excel Modular Big Beam Clamp</td>
<td>25</td>
</tr>
<tr>
<td>Excel Modular Universal Beam Tube Clamp</td>
<td>26</td>
</tr>
<tr>
<td>TROLLEY SYSTEM, BEAMS & ACCESSORIES</td>
<td>28</td>
</tr>
<tr>
<td>SHORING MATERIAL</td>
<td></td>
</tr>
<tr>
<td>Excel Modular Shoring Post</td>
<td>31</td>
</tr>
<tr>
<td>Excel Modular Shoring Heads and Jacks</td>
<td>33</td>
</tr>
<tr>
<td>Design of Seismic Scaffolding</td>
<td>34</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (CONT’D)

SKID PANS

|
|---|
| 38 |

FALL ARREST

- Excel Modular Tie-Off Lug 39
- Excel Modular Davit Arm 40
- Excel Modular SRL Adapter 41

ADDITIONAL INFORMATION

- Scaffold Inspection Guidelines 43
- Repair Guidelines That Must be Followed by Excel End-Users 45
- Scaffold Material Loading and Shipping Guidelines 46
INTRODUCTION

This manual does not replace OSHA 1926/1910 or CAL/OSHA documents.

Compatibility of Excel Modular Scaffold

Excel Modular Scaffold is designed and engineered to be compatible with standard tube and clamp components (i.e., clamps, poles, ladders and ladder brackets) that are currently available within the scaffold industry. These tube and clamp components are generally used:
- As tie-offs when needed for seismic considerations.
- When needed to transition horizontally to get around obstacles.
- When needed to transition vertically to get around an interference.
- As ladders and ladder brackets for access to work platforms.
- As needed for structural bracing and reinforcement.

Excel expects all users to utilize a registered professional engineer (licensed PE) to design and approve drawings, as required by OSHA, CAL-OSHA or any other regulatory agency.

General Erection Criteria

Excel Modular Scaffold was designed and engineered to be constructed using the same requirements specified by OSHA and CAL/OSHA, that have been historically used with tube and clamp and other types of system scaffold.

Excel expects all users to be familiar with Federal, State and local regulations governing scaffold construction and use.

Excel expects all users to erect, modify or dismantle scaffolding using only qualified and competent personnel with adequate supervision.

Excel expects all users to provide competent and qualified supervision who can inspect and sign off on each scaffold before authorization is given for general use.

Ensure all items containing locks or pins are secured before handling, transporting or passing these items to another worker.

Shipping and Receiving:
(225) 777-4157 | yard.manager@excelscaffold.com

Engineering:
(443) 293-6352 | engineering@global-excel.com

Website: www.excelscaffold.com

All material must be inspected prior to use! See inspection guidelines on page 112.
1. Unless otherwise stated, all load data presented in this manual includes the OSHA (4:1) safety factor.

2. Unless otherwise stated, all load data presented in this manual is for downward or compressive loading only.

3. Excel’s scaffold material, when constructed for normal use, is not designed to be up- or side-loaded in excess of OSHA and ANSI requirements. When conditions require special loading, extra design features must be added to ensure proper stability.

4. Once installed and completed, scaffolding should be considered part of the customer’s plant equipment. Abuse or mistreatment of the scaffold material should not be tolerated.

5. The scaffold material should be inspected for damage and repaired after any incident which could affect the integrity of the scaffold material, such as:
 - The scaffold comes into contact with any moving equipment, forklifts, trucks or trailers, and other types of mobile equipment.
 - The scaffold is affected by an unintended load, flanges or piping attached to a crane or come-along, objects dropped from above or swung in from the side, etc.

6. The end-user should ensure their competent and qualified individuals and scaffold erection personnel are trained and fully understand the above requirements.

7. Field testing of scaffold components shall not be conducted. Testing will be performed only by the manufacturer.

8. All end-users must be trained in the proper use of Excel Modular Scaffold. This tech manual is provided as a reference for training. New users should examine the Excel Building Tips section at the end of this manual.

9. OSHA requires that inspections must be made by the scaffold builder and end-user.

All material must be inspected prior to use! See inspection guidelines on page 112.
GLOSSARY OF TERMS

ALLOWABLE LOAD: The maximum load a component can carry without exceeding the safety factor required by OSHA.

ANCHORAGE POINT: A secure point of attachment for lifelines, lanyards or deceleration devices.

BROWER (PUTLOG): A horizontal transverse scaffold member (which can be supported by ledgers or runners) upon which the scaffold platform rests; joins a scaffold’s uprights, posts, poles, and similar members.

BRACE: A rigid connection that holds one scaffold member in a fixed position with respect to another member or to a building or structure.

CAL/OSHA: The California Occupational Safety and Health Administration protects and improves the health and safety of working men and women in California through the following activities: Setting and enforcing standards; providing outreach, education, and assistance; issuing permits, licenses, certifications, registrations, and approvals.

CENTER LOAD (CONCENTRATED LOAD): A load that extends over such a small part of the scaffold that it may be considered to act on a single point.

COMPETENT PERSON: Defined by OSHA as one who is capable of identifying existing and predictable hazards in the surrounding or working conditions that are unsanitary, hazardous, or dangerous to employees, and who has authorization to take prompt corrective measures to eliminate them.

CONTINUOUS RUN SCAFFOLD: A scaffold constructed using a series of interconnected braced scaffold members or supporting structures erected to form a continuous scaffold.

DISTRIBUTED LOAD: A load distributed evenly over the entire length of a structural member or the surface of a platform.

PROFESSIONAL ENGINEER (PE): An individual, who has fulfilled education and experience requirements and passed rigorous exams that, under State licensure laws, permits them to offer engineering services directly to the public.

QUALIFIED PERSON: Defined by OSHA as one who, by possession of recognized degree, certificate, or professional standing, or who by extensive knowledge, training, and experience, has successfully demonstrated the ability to solve or resolve problems related to the subject matter, the work, or the project.

OSHA: The Occupational Safety and Health Administration was created to assure safe and healthful working conditions for working men and women by setting and enforcing standards and by providing training, outreach, education and assistance.

RUNNER (LEDGER): The lengthwise horizontal spacing or bracing member that can support the bearers; also called a ledger or ribbon.

Sources:
1. Occupational Safety and Health Administration
2. Safety and Health Regulations for Construction
3. National Center for Construction Education and Research

All material must be inspected prior to use! See inspection guidelines on page 112.
EXCEL MODULAR SCREW JACK

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Weight (lbs.)</th>
<th>Exposed Thread (inches)</th>
<th>Maximum Allowable Load (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBJ</td>
<td>Fixed Base Screw Jack</td>
<td>11.6</td>
<td>0 – 6</td>
<td>10,100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 – 12</td>
<td>9,000</td>
</tr>
<tr>
<td>FBJ2</td>
<td>Fixed Base Caster Screw Jack</td>
<td>12.2</td>
<td>0 – 6</td>
<td>10,100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 – 12</td>
<td>9,000</td>
</tr>
</tbody>
</table>

Third-party manufactured component. Data may vary.

The fixed base caster screw jack has a larger base plate that is designed to allow the jack to be bolted to a standard flat top caster.

The fixed base caster screw jack also has added bracing to make it stronger while attached to a caster.

BUILD NOTES:
1. 7/8 x 1 1/2 inch, grade 5 or stronger bolts with flat washers must be used to bolt the caster to the fixed base caster screw jack.
2. Wood sills are to be used under leveling jacks in accordance with OSHA guidelines or plant safety regulations, whichever is stricter.
3. Wood sills should be properly sized to prevent overloading the substrate on which the scaffold is resting.

WARNING: Jack cannot be extended more than 12 inches above the base.

All material must be inspected prior to use! See inspection guidelines on page 112.
EXCEL MODULAR SWIVEL JACK

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Weight (lbs.)</th>
<th>Maximum Allowable Load (lbs.)</th>
<th>Load (P) When Angle of Slope 0°</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBJ</td>
<td>Swivel Base Screw Jack</td>
<td>7.5</td>
<td>5,000</td>
<td></td>
</tr>
</tbody>
</table>

Third-party manufactured component. Data may vary.

WARNING: Jack cannot be extended more than 12 inches above the base.

All material must be inspected prior to use! See inspection guidelines on page 112.
EXCEL MODULAR CASTER

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Wheel Type</th>
<th>Weight (lbs.)</th>
<th>Allowable Rolling Load (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR8</td>
<td>8" Caster with Pin</td>
<td>Plastic/Rubber</td>
<td>17</td>
<td>900</td>
</tr>
<tr>
<td>CRF8</td>
<td>8" Caster Flat Base</td>
<td>Plastic/Rubber</td>
<td>17.5</td>
<td>900</td>
</tr>
<tr>
<td>CR12</td>
<td>12" Caster</td>
<td>Plastic/Rubber</td>
<td>23</td>
<td>1,300</td>
</tr>
</tbody>
</table>

Third-party manufactured component. Data may vary.

BUILD NOTES:
1. Casters must be locked while working on the scaffold.
2. Check the weight of the scaffold and intended load when using casters. To maintain a 4:1 safety factor, a scaffold 15 feet high with two (2) board decks is the largest scaffold that should be built with 8-inch casters. A scaffold 21 feet high with three (3) board decks is the largest scaffold that should be built with 12-inch casters.

MAINTENANCE:
1. Casters should be periodically maintained. If they have grease fittings, they should be filled with a white lithium grease (ST-80 High-Performance Grease or its equivalent).
2. WD-40 can be used before application of grease or oil to loosen old grease and remove any rust buildup.
3. The caster bearings must be inspected for any wear or damage. Replace any casters that show signs of wear or damage.

All material must be inspected prior to use! See inspection guidelines on page 112.
EXCEL MODULAR WALK-THRU BASE PLATES

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Size (inches)</th>
<th>Weight (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WTFP32</td>
<td>Walk-Thru Base Plate 32"</td>
<td>32</td>
<td>9.5</td>
</tr>
<tr>
<td>WTFP36</td>
<td>Walk-Thru Base Plate 36"</td>
<td>36</td>
<td>10.3</td>
</tr>
<tr>
<td>WTFP42</td>
<td>Walk-Thru Base Plate 42"</td>
<td>42</td>
<td>11.5</td>
</tr>
<tr>
<td>WTFP48</td>
<td>Walk-Thru Base Plate 48"</td>
<td>48</td>
<td>12.7</td>
</tr>
<tr>
<td>WTFP60</td>
<td>Walk-Thru Base Plate 60"</td>
<td>60</td>
<td>15.1</td>
</tr>
<tr>
<td>WTFP72</td>
<td>Walk-Thru Base Plate 72"</td>
<td>72</td>
<td>17.5</td>
</tr>
<tr>
<td>WTFP84</td>
<td>Walk-Thru Base Plate 84"</td>
<td>84</td>
<td>20</td>
</tr>
<tr>
<td>WTFP96</td>
<td>Walk-Thru Base Plate 96"</td>
<td>96</td>
<td>23</td>
</tr>
<tr>
<td>WTFP120</td>
<td>Walk-Thru Base Plate 120"</td>
<td>120</td>
<td>26</td>
</tr>
</tbody>
</table>

Walk-thru base plates are designed to provide a walkway underneath a scaffold. It allows the bottom horizontals to be removed while still providing support for the scaffold base.

The flat plate is used to prevent the vertical posts from moving outward, and the side brace prevents the scaffold from moving inward.

BUILD NOTES:
1. Walk-thru base plates should not be used with scaffolds that will have excessive loading (greater than 25 lbs./sq. ft.) or any scaffold over 50-feet high.
2. Short diagonal pin braces or tube and clamp can be used for the side braces.
3. In areas where it is not possible to attach bracing to both verticals, it is acceptable to attach side bracing to only one (1) vertical. When only one (1) side brace is used, the scaffold height should not exceed 30-feet high.
4. Tying the vertical post to a plant approved structure with tube and clamp may also be used in place of side bracing.
5. Netting or other safety material may be required at all scaffold decks when personnel are allowed to pass under a scaffold.

All material must be inspected prior to use! See inspection guidelines on page 112.
EXCEL MODULAR SAFETY OUTRIGGER

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Weight (lbs.)</th>
<th>Maximum Allowable Load (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR1</td>
<td>Safety Outrigger</td>
<td>14</td>
<td>1,600</td>
</tr>
</tbody>
</table>

Safety outriggers are designed to be used with scaffolds on casters or jacks that require a larger base dimension to height ratio.

BUILD NOTES:
1. While working on the scaffold, the jack in the safety outrigger should be fully down.
2. When moving a rolling tower, the jack on the safety outrigger should be raised until it is ¼ inch to ½ inch from the floor or ground surface.
3. Safety outriggers can never be used as the supporting member of a scaffold.

CAUTION: There is a pinch point when closing the trigger.

Not intended for use with swivel base screw jacks.

All material must be inspected prior to use! See inspection guidelines on page 112.
EXCEL MODULAR VERTICAL POST

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Effective Length (inches)</th>
<th>Overall Length (inches) (A)</th>
<th>Tube Length (inches) (B)</th>
<th>Weight Galvanized (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP1</td>
<td>Vertical Pin</td>
<td>11.5</td>
<td>12</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>VP2</td>
<td>2-Cup Vertical</td>
<td>11.5</td>
<td>16.75</td>
<td>11.5</td>
<td>3.3</td>
</tr>
<tr>
<td>VP4</td>
<td>4-Cup Vertical</td>
<td>23</td>
<td>28.25</td>
<td>23</td>
<td>8.6</td>
</tr>
<tr>
<td>VP6</td>
<td>6-Cup Vertical</td>
<td>34.5</td>
<td>39.75</td>
<td>34.5</td>
<td>11.9</td>
</tr>
<tr>
<td>VP8</td>
<td>8-Cup Vertical</td>
<td>46</td>
<td>51.25</td>
<td>46</td>
<td>15.3</td>
</tr>
<tr>
<td>VP10</td>
<td>10-Cup Vertical</td>
<td>57.5</td>
<td>62.75</td>
<td>57.5</td>
<td>18.6</td>
</tr>
<tr>
<td>VP12</td>
<td>12-Cup Vertical</td>
<td>69</td>
<td>74.25</td>
<td>69</td>
<td>21.8</td>
</tr>
<tr>
<td>VP14</td>
<td>14-Cup Vertical</td>
<td>80.5</td>
<td>85.75</td>
<td>80.5</td>
<td>25.3</td>
</tr>
<tr>
<td>VP16</td>
<td>16-Cup Vertical</td>
<td>92</td>
<td>97.25</td>
<td>92</td>
<td>28.4</td>
</tr>
<tr>
<td>VP20</td>
<td>20-Cup Vertical</td>
<td>115</td>
<td>120.25</td>
<td>115</td>
<td>35.3</td>
</tr>
</tbody>
</table>

Cup spacing is 5.75 inches.

MATERIAL SPECS:

1. Vertica is designed to be compatible with standard 1.90 OD tube and clamp material. When connecting verticals, a vertical pin with snap buttons must be used to align the verticals.
2. All tubing is 1.90 diameter, 11-gauge (0.120 wall), high-strength, minimum 65,000 yield, and 75,000 tensile.
3. Tube length is the length of tubing required to manufacture each vertical.

CAUTION: There is a pinch point located where two verticals are pinned together.

Use caution when passing verticals. Ensure the vertical pin is correctly fastened.

WARNING: Two-cup verticals should only be used as the top member of a vertical column. Two-cup verticals cannot have a vertical pin inserted in the top and bottom. The snap buttons will not lock on both pins and may create a drop hazard.
EXCEL MODULAR VERTICAL POST

<table>
<thead>
<tr>
<th>Unbraced Post Length (inches)</th>
<th>Maximum Allowable Compressive Load When Rated for Scaffold Use (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80.5 (6.70 ft.)</td>
<td>4,500</td>
</tr>
<tr>
<td>69 (5.57 ft.)</td>
<td>6,986</td>
</tr>
<tr>
<td>57.5 (4.79 ft.)</td>
<td>7,670</td>
</tr>
<tr>
<td>46 (3.83 ft.)</td>
<td>8,230</td>
</tr>
<tr>
<td>33.75 (2.81 ft.)</td>
<td>8,690</td>
</tr>
</tbody>
</table>

Allowable loads include OSHA (4:1) safety factor.

When designing scaffolds with unique configurations or special loading conditions, consult with a qualified person or engineer (may require a PE stamp).

All material must be inspected prior to use! See inspection guidelines on page 112.
Excel's newest horizontal end connectors feature a safety latch which prevents the horizontal from being accidently disconnected.

The new horizontals are capped on the top to prevent debris from entering into the trigger locking mechanism and allows metal scaffold boards to be placed the full length of the horizontal.

MATERIAL SPECS:
1. Tubing for the 7-foot bearer through the 10-foot ledger is 1.90 diameter, 11-gauge (0.120 wall), high-strength, minimum 65,000 yield, and 75,000 tensile.
2. All other tubing is 13-gauge (0.083 wall), high-strength, minimum 65,000 yield, and 75,000 tensile.
3. Tube length is the length of tubing required to manufacture each horizontal.

⚠️ CAUTION: There is a pinch point when closing the trigger.

Excel Modular Horizontal Bar

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Vertical Post Spacing (inches)</th>
<th>Overall Width (inches)</th>
<th>Tube Length (inches)</th>
<th>Weight Galvanized (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB24</td>
<td>24" Bearer, 2-Plank Bearer</td>
<td>24</td>
<td>22</td>
<td>17.38</td>
<td>10</td>
</tr>
<tr>
<td>PB32</td>
<td>32" Bearer, 3-Plank Bearer</td>
<td>32</td>
<td>30</td>
<td>25.38</td>
<td>10.5</td>
</tr>
<tr>
<td>PB36</td>
<td>36" Bearer</td>
<td>36</td>
<td>34</td>
<td>29.38</td>
<td>11</td>
</tr>
<tr>
<td>PB42</td>
<td>42" Bearer, 4-Plank Bearer</td>
<td>42</td>
<td>40</td>
<td>35.38</td>
<td>12</td>
</tr>
<tr>
<td>PB48</td>
<td>48" Bearer, 5-Plank Bearer</td>
<td>48</td>
<td>46</td>
<td>41.38</td>
<td>12.5</td>
</tr>
<tr>
<td>PB60</td>
<td>60" Bearer, 6-Plank Bearer</td>
<td>60</td>
<td>58</td>
<td>53.38</td>
<td>15</td>
</tr>
<tr>
<td>PB72</td>
<td>6' Bearer</td>
<td>72</td>
<td>70</td>
<td>65.38</td>
<td>17.5</td>
</tr>
<tr>
<td>PB84</td>
<td>7' Bearer</td>
<td>84</td>
<td>82</td>
<td>77.38</td>
<td>19.5</td>
</tr>
<tr>
<td>HL96</td>
<td>8' Ledger</td>
<td>96</td>
<td>94</td>
<td>89.38</td>
<td>20.5</td>
</tr>
<tr>
<td>HL108</td>
<td>9' Ledger</td>
<td>108</td>
<td>106</td>
<td>101.38</td>
<td>21.5</td>
</tr>
<tr>
<td>HL120</td>
<td>10' Ledger</td>
<td>120</td>
<td>118</td>
<td>113.38</td>
<td>25</td>
</tr>
</tbody>
</table>

Vertical Post Spacing

Overall Width

The horizontal is unlatched by raising the bottom trigger to free the latch and pressing down on both triggers to unhook from the cup.

All material must be inspected prior to use! See inspection guidelines on page 112.
EXCEL MODULAR HORIZONTAL BAR

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Vertical Post Spacing (inches)</th>
<th>Allowable Center Load (lbs.)</th>
<th>Allowable Uniform Load (lbs./ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB24</td>
<td>24" Bearer, 2-Plank Bearer</td>
<td>24</td>
<td>2,250</td>
<td>2,250</td>
</tr>
<tr>
<td>PB32</td>
<td>32" Bearer, 3-Plank Bearer</td>
<td>32</td>
<td>1,400</td>
<td>1,050</td>
</tr>
<tr>
<td>PB36</td>
<td>36" Bearer</td>
<td>36</td>
<td>1,100</td>
<td>733</td>
</tr>
<tr>
<td>PB42</td>
<td>42" Bearer, 4-Plank Bearer</td>
<td>42</td>
<td>1,000</td>
<td>571</td>
</tr>
<tr>
<td>PB48</td>
<td>48" Bearer, 5-Plank Bearer</td>
<td>48</td>
<td>900</td>
<td>450</td>
</tr>
<tr>
<td>PB60</td>
<td>60" Bearer, 6-Plank Bearer</td>
<td>60</td>
<td>625</td>
<td>250</td>
</tr>
<tr>
<td>PB72</td>
<td>6' Bearer</td>
<td>72</td>
<td>530</td>
<td>177</td>
</tr>
<tr>
<td>PB84</td>
<td>7' Bearer</td>
<td>84</td>
<td>410</td>
<td>117</td>
</tr>
<tr>
<td>HL96</td>
<td>8' Ledger</td>
<td>96</td>
<td>320</td>
<td>80</td>
</tr>
<tr>
<td>HL108</td>
<td>9' Ledger</td>
<td>108</td>
<td>275</td>
<td>61</td>
</tr>
<tr>
<td>HL120</td>
<td>10' Ledger</td>
<td>120</td>
<td>250</td>
<td>50</td>
</tr>
</tbody>
</table>

BUILD NOTES:
1. Vertical leg may be the limiting load carrying member.
2. Center load is applied to the center four (4) inches of the bearer or ledger.

All material must be inspected prior to use!
See inspection guidelines on page 112.
EXCEL MODULAR HORIZONTAL BAR (CONT’D)

<table>
<thead>
<tr>
<th>Bearer</th>
<th>PB24</th>
<th>PB32</th>
<th>PB36</th>
<th>PB42</th>
<th>PB48</th>
<th>PB60</th>
<th>PB72</th>
<th>PB84</th>
<th>HL96</th>
<th>HL108</th>
<th>HL120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>24</td>
<td>32</td>
<td>36</td>
<td>42</td>
<td>48</td>
<td>60</td>
<td>72</td>
<td>84</td>
<td>96</td>
<td>108</td>
<td>120</td>
</tr>
<tr>
<td>(inches)</td>
<td></td>
</tr>
<tr>
<td>PB24</td>
<td>24</td>
<td>1125</td>
<td>844</td>
<td>750</td>
<td>643</td>
<td>563</td>
<td>450</td>
<td>375</td>
<td>321</td>
<td>281</td>
<td>250</td>
</tr>
<tr>
<td>PB32</td>
<td>32</td>
<td>574</td>
<td>431</td>
<td>383</td>
<td>328</td>
<td>287</td>
<td>230</td>
<td>191</td>
<td>164</td>
<td>144</td>
<td>128</td>
</tr>
<tr>
<td>PB36</td>
<td>36</td>
<td>340</td>
<td>255</td>
<td>227</td>
<td>194</td>
<td>170</td>
<td>136</td>
<td>113</td>
<td>97</td>
<td>85</td>
<td>76</td>
</tr>
<tr>
<td>PB42</td>
<td>42</td>
<td>286</td>
<td>214</td>
<td>190</td>
<td>163</td>
<td>143</td>
<td>114</td>
<td>95</td>
<td>82</td>
<td>71</td>
<td>63</td>
</tr>
<tr>
<td>PB48</td>
<td>48</td>
<td>225</td>
<td>169</td>
<td>150</td>
<td>129</td>
<td>113</td>
<td>90</td>
<td>75</td>
<td>64</td>
<td>56</td>
<td>50</td>
</tr>
<tr>
<td>PB60</td>
<td>60</td>
<td>125</td>
<td>94</td>
<td>83</td>
<td>71</td>
<td>63</td>
<td>50</td>
<td>42</td>
<td>36</td>
<td>31</td>
<td>28</td>
</tr>
<tr>
<td>PB72</td>
<td>72</td>
<td>88</td>
<td>66</td>
<td>59</td>
<td>50</td>
<td>44</td>
<td>35</td>
<td>29</td>
<td>25</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>PB84</td>
<td>84</td>
<td>59</td>
<td>44</td>
<td>39</td>
<td>33</td>
<td>29</td>
<td>23</td>
<td>20</td>
<td>17</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>HL96</td>
<td>96</td>
<td>40</td>
<td>30</td>
<td>27</td>
<td>23</td>
<td>20</td>
<td>16</td>
<td>13</td>
<td>11</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>HL108</td>
<td>108</td>
<td>31</td>
<td>23</td>
<td>20</td>
<td>17</td>
<td>15</td>
<td>12</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>HL120</td>
<td>120</td>
<td>25</td>
<td>19</td>
<td>17</td>
<td>14</td>
<td>13</td>
<td>10</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Chart shows the total allowable load per square foot (live load + dead load).

All areas below 25 lbs./sq. ft. (in yellow) do not meet OSHA requirements for a light-duty scaffold. OSHA 1926.451 (a) 6 in conjunction with non-mandatory Appendix A, define uniform loads for scaffold types.

BUILD NOTE: Deck planking or vertical members may be the limiting load carrying member.

WARNING: Additional bracing is required for areas in yellow. Please consult with your qualified person and/or engineer.

All material must be inspected prior to use! See inspection guidelines on page 112.
EXCEL MODULAR HORIZONTAL BAR (CONT’D)

<table>
<thead>
<tr>
<th>Bearer (ft.)</th>
<th>PB24</th>
<th>PB32</th>
<th>PB36</th>
<th>PB42</th>
<th>PB48</th>
<th>PB60</th>
<th>PB72</th>
<th>PB84</th>
<th>HL96</th>
<th>HL108</th>
<th>HL120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>24</td>
<td>32</td>
<td>36</td>
<td>42</td>
<td>48</td>
<td>60</td>
<td>72</td>
<td>84</td>
<td>96</td>
<td>108</td>
<td>120</td>
</tr>
<tr>
<td>(inches)</td>
<td>24</td>
<td>2250</td>
<td>1688</td>
<td>1500</td>
<td>1286</td>
<td>1125</td>
<td>900</td>
<td>750</td>
<td>643</td>
<td>563</td>
<td>500</td>
</tr>
<tr>
<td>PB24</td>
<td>32</td>
<td>2250</td>
<td>1688</td>
<td>1500</td>
<td>1286</td>
<td>1125</td>
<td>900</td>
<td>750</td>
<td>643</td>
<td>563</td>
<td>500</td>
</tr>
<tr>
<td>PB32</td>
<td>32</td>
<td>1148</td>
<td>861</td>
<td>766</td>
<td>656</td>
<td>574</td>
<td>459</td>
<td>383</td>
<td>328</td>
<td>287</td>
<td>255</td>
</tr>
<tr>
<td>PB36</td>
<td>32</td>
<td>680</td>
<td>510</td>
<td>453</td>
<td>388</td>
<td>340</td>
<td>272</td>
<td>227</td>
<td>194</td>
<td>170</td>
<td>151</td>
</tr>
<tr>
<td>PB42</td>
<td>32</td>
<td>571</td>
<td>429</td>
<td>381</td>
<td>327</td>
<td>286</td>
<td>229</td>
<td>190</td>
<td>163</td>
<td>143</td>
<td>127</td>
</tr>
<tr>
<td>PB48</td>
<td>32</td>
<td>450</td>
<td>338</td>
<td>300</td>
<td>257</td>
<td>225</td>
<td>180</td>
<td>150</td>
<td>129</td>
<td>113</td>
<td>100</td>
</tr>
<tr>
<td>PB60</td>
<td>32</td>
<td>250</td>
<td>388</td>
<td>78</td>
<td>118</td>
<td>101</td>
<td>88</td>
<td>71</td>
<td>59</td>
<td>44</td>
<td>39</td>
</tr>
<tr>
<td>PB72</td>
<td>32</td>
<td>177</td>
<td>133</td>
<td>68</td>
<td>118</td>
<td>101</td>
<td>88</td>
<td>71</td>
<td>59</td>
<td>44</td>
<td>39</td>
</tr>
<tr>
<td>PB84</td>
<td>32</td>
<td>117</td>
<td>88</td>
<td>78</td>
<td>78</td>
<td>67</td>
<td>59</td>
<td>47</td>
<td>39</td>
<td>33</td>
<td>29</td>
</tr>
<tr>
<td>HL96</td>
<td>32</td>
<td>96</td>
<td>80</td>
<td>60</td>
<td>53</td>
<td>46</td>
<td>40</td>
<td>32</td>
<td>27</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>HL108</td>
<td>32</td>
<td>108</td>
<td>61</td>
<td>46</td>
<td>41</td>
<td>35</td>
<td>31</td>
<td>24</td>
<td>20</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>HL120</td>
<td>32</td>
<td>120</td>
<td>50</td>
<td>38</td>
<td>33</td>
<td>29</td>
<td>25</td>
<td>20</td>
<td>17</td>
<td>14</td>
<td>11</td>
</tr>
</tbody>
</table>

Chart shows the total allowable load per square foot (live load + dead load).

All areas below 25 lbs./sq. ft. (in yellow) do not meet OSHA requirements for a light-duty scaffold. OSHA 1926.451 (a) 6 in conjunction with non-mandatory Appendix A, define uniform loads for scaffold types.

BUILD NOTES:
1. Bearer supports the boards.
2. Deck planking or vertical members may be the limiting load carrying member.

WARNING: Additional bracing is required for areas in yellow. Please consult with your qualified person and/or engineer.

All material must be inspected prior to use! See inspection guidelines on page 112.
BRACING EXCEL HORIZONTAL BARS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Vertical Post Spacing (inches)</th>
<th>Allowable Center Load</th>
<th>Allowable Uniform Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB60</td>
<td>60" Bearer, 6-Plank Bearer</td>
<td>60</td>
<td>1,200</td>
<td>2,400</td>
</tr>
<tr>
<td>PB72</td>
<td>6' Bearer</td>
<td>72</td>
<td>975</td>
<td>1,950</td>
</tr>
<tr>
<td>PB84</td>
<td>7' Bearer</td>
<td>84</td>
<td>875</td>
<td>1,750</td>
</tr>
<tr>
<td>HL96</td>
<td>8' Ledger</td>
<td>96</td>
<td>750</td>
<td>1,500</td>
</tr>
<tr>
<td>HL108</td>
<td>9' Ledger</td>
<td>108</td>
<td>675</td>
<td>1,350</td>
</tr>
<tr>
<td>HL120</td>
<td>10' Ledger</td>
<td>120</td>
<td>625</td>
<td>1,250</td>
</tr>
</tbody>
</table>

Diagonal bracing can be added to Excel horizontal bars when greater strength is required. Diagonal swivel braces, diagonal pin braces, short diagonal braces, or tube and clamp may be used to provide additional strength to the Excel horizontal bar.

Horizontal bracing adds additional torque to the verticals, which must be considered when building heavy-duty or tall scaffolds.

BUILD NOTES:
1. The angle of the bottom connection of the brace to the vertical post must be 45 degrees or less.
2. **Vertical leg may be the limiting load carrying member.**
3. Center load is applied to the center four (4) inches of the bearer or ledger.
4. Clamp is located +/- six (6) inches from center of bearer.
5. Maximum tube/brace length is eight (8) feet between leg clamp and bearer clamp.
6. Tube/brace is attached to leg within one (1) foot of horizontal on same plane.

All material must be inspected prior to use! See inspection guidelines on page 112.
EXCEL MODULAR HORIZONTAL BAR
WITH ONE (1) BRACE

<table>
<thead>
<tr>
<th>Bearer</th>
<th>PB24</th>
<th>PB32</th>
<th>PB36</th>
<th>PB42</th>
<th>PB48</th>
<th>PB60</th>
<th>PB72</th>
<th>PB84</th>
<th>HL96</th>
<th>HL108</th>
<th>HL120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (inches)</td>
<td>24</td>
<td>32</td>
<td>36</td>
<td>42</td>
<td>48</td>
<td>60</td>
<td>72</td>
<td>84</td>
<td>96</td>
<td>108</td>
<td>120</td>
</tr>
<tr>
<td>PB60</td>
<td>60</td>
<td>240</td>
<td>180</td>
<td>160</td>
<td>137</td>
<td>120</td>
<td>96</td>
<td>80</td>
<td>69</td>
<td>60</td>
<td>53</td>
</tr>
<tr>
<td>PB72</td>
<td>72</td>
<td>163</td>
<td>122</td>
<td>108</td>
<td>93</td>
<td>81</td>
<td>65</td>
<td>54</td>
<td>46</td>
<td>41</td>
<td>36</td>
</tr>
<tr>
<td>PB84</td>
<td>84</td>
<td>125</td>
<td>94</td>
<td>83</td>
<td>71</td>
<td>63</td>
<td>50</td>
<td>42</td>
<td>36</td>
<td>31</td>
<td>28</td>
</tr>
<tr>
<td>HL96</td>
<td>96</td>
<td>94</td>
<td>70</td>
<td>63</td>
<td>54</td>
<td>47</td>
<td>38</td>
<td>31</td>
<td>27</td>
<td>23</td>
<td>21</td>
</tr>
<tr>
<td>HL108</td>
<td>108</td>
<td>75</td>
<td>56</td>
<td>50</td>
<td>43</td>
<td>38</td>
<td>30</td>
<td>25</td>
<td>21</td>
<td>19</td>
<td>17</td>
</tr>
<tr>
<td>HL120</td>
<td>120</td>
<td>63</td>
<td>47</td>
<td>42</td>
<td>36</td>
<td>31</td>
<td>25</td>
<td>21</td>
<td>18</td>
<td>16</td>
<td>14</td>
</tr>
</tbody>
</table>

Chart shows the allowable load per square foot when horizontal is braced as defined on page 11—Bracing Excel Horizontal Bars. Chart shows the total allowable load per square foot (live load + dead load).

Standard board layout.

Bearer
Contributing Length (X) ft.

Bearers
Continuous-Run Scaffold

All areas below 25 lbs./sq. ft. (in yellow) do not meet OSHA requirements for a light-duty scaffold. OSHA 1926.451 (a) 6 in conjunction with non-mandatory Appendix A, define uniform loads for scaffold types.

BUILD NOTES:
1. Bearer supports the boards and has one (1) diagonal brace.
2. Deck planking or vertical members may be the limiting load carrying member.

WARNING: Additional bracing is required for areas in yellow. Please consult with your qualified person and/or engineer.

All material must be inspected prior to use! See inspection guidelines on page 112.
EXCEL MODULAR HORIZONTAL BAR
WITH ONE (1) BRACE (CONT’D)

<table>
<thead>
<tr>
<th>Bearer</th>
<th>Ledger Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PB24</td>
</tr>
<tr>
<td>Length (inches)</td>
<td>24</td>
</tr>
<tr>
<td>PB60</td>
<td>60</td>
</tr>
<tr>
<td>PB72</td>
<td>72</td>
</tr>
<tr>
<td>PB84</td>
<td>84</td>
</tr>
<tr>
<td>HL96</td>
<td>96</td>
</tr>
<tr>
<td>HL108</td>
<td>108</td>
</tr>
<tr>
<td>HL120</td>
<td>120</td>
</tr>
</tbody>
</table>

Chart shows the allowable load per square foot when horizontal is braced as defined on page 15—Bracing Excel Horizontal Bars. Chart shows the total allowable load per square foot (live load + dead load).

BUILD NOTES:
1. Bearer supports the boards and has one (1) diagonal brace.
2. Deck planking or vertical members may be the limiting load carrying member.

All areas below 25 lbs./sq. ft. do not meet OSHA requirements for a light-duty scaffold. OSHA 1926.451 (a) 6 in conjunction with non-mandatory Appendix A, define uniform loads for scaffold types.

Single-bay scaffold or staggered board deck layout.

All material must be inspected prior to use! See inspection guidelines on page 112.
EXCEL MODULAR
ADJUSTABLE BEARER

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Minimum Post Spacing (inches)</th>
<th>Maximum Post Spacing (inches)</th>
<th>Weight Galvanized (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPB36</td>
<td>36” to 48” Adjustable Bearer</td>
<td>36</td>
<td>47</td>
<td>12</td>
</tr>
<tr>
<td>TPB48</td>
<td>48” to 60” Adjustable Bearer</td>
<td>48</td>
<td>59</td>
<td>17</td>
</tr>
<tr>
<td>TPB60</td>
<td>60” to 72” Adjustable Bearer</td>
<td>60</td>
<td>71</td>
<td>20</td>
</tr>
<tr>
<td>TPB72</td>
<td>72” to 84” Adjustable Bearer</td>
<td>72</td>
<td>83</td>
<td>23</td>
</tr>
<tr>
<td>TPB84</td>
<td>84” to 96” Adjustable Bearer</td>
<td>84</td>
<td>95</td>
<td>26</td>
</tr>
<tr>
<td>THL96</td>
<td>96” to 108” Adjustable Ledger</td>
<td>96</td>
<td>107</td>
<td>32</td>
</tr>
</tbody>
</table>

Adjustable bearers are designed to provide deck support between two (2) self-supporting scaffold structures where traditionally only tube and clamp could be used. They may also be used to create odd-sized scaffolds (ex: 5 feet x 6 ½ feet).

MATERIAL SPECS:
1. Outer tubing is 1.90 diameter, 11-gauge (0.120 wall), high-strength, minimum 65,000 yield, and 75,000 tensile.
2. Inner tubing is 1.625 diameter, 11-gauge (0.120 wall), high-strength, minimum 65,000 yield, and 75,000 tensile.

CAUTION: There is a pinch point when closing the trigger and where the parts telescope.

WARNING: Adjustable bearers provide limited longitudinal support.

Intermediate horizontal adapters may only be placed on adjustable bearers if designed by an engineer.

All material must be inspected prior to use! See inspection guidelines on page 112.
EXCEL MODULAR ADJUSTABLE BEARER (CONT’D)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Allowable Center Load (lbs.)</th>
<th>Allowable Uniform Load When Fully Extended (lbs./ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPB36</td>
<td>36” to 48” Adjustable Bearer</td>
<td>812</td>
<td>406</td>
</tr>
<tr>
<td>TPB48</td>
<td>48” to 60” Adjustable Bearer</td>
<td>625</td>
<td>250</td>
</tr>
<tr>
<td>TPB60</td>
<td>60” to 72” Adjustable Bearer</td>
<td>750</td>
<td>250</td>
</tr>
<tr>
<td>TPB72</td>
<td>72” to 84” Adjustable Bearer</td>
<td>687</td>
<td>196</td>
</tr>
<tr>
<td>TPB84</td>
<td>84” to 96” Adjustable Bearer</td>
<td>618</td>
<td>155</td>
</tr>
<tr>
<td>THL96</td>
<td>96” to 108” Adjustable Ledger</td>
<td>562</td>
<td>125</td>
</tr>
</tbody>
</table>

BUILD NOTES:
1. Vertical leg may be the limiting load carrying member.
2. Center load is applied to the center four (4) inches of the bearer or ledger.

All material must be inspected prior to use! See inspection guidelines on page 112.
EXCEL MODULAR
ADJUSTABLE BEARER (CONT’D)

<table>
<thead>
<tr>
<th>Bearer</th>
<th>Ledger Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PB24</td>
</tr>
<tr>
<td>Length (inches)</td>
<td>24</td>
</tr>
<tr>
<td>TPB36</td>
<td>47</td>
</tr>
<tr>
<td>TPB48</td>
<td>59</td>
</tr>
<tr>
<td>TPB60</td>
<td>71</td>
</tr>
<tr>
<td>TPB72</td>
<td>83</td>
</tr>
<tr>
<td>TPB84</td>
<td>95</td>
</tr>
<tr>
<td>THL96</td>
<td>107</td>
</tr>
</tbody>
</table>

Chart shows the total allowable load per square foot (live load + dead load).
Chart shows worst case scenario— adjustable bearer fully extended.

BUILD NOTES:
1. Bearer supports the boards.
2. Deck planking or vertical members may be the limiting load carrying member.

WARNING: Additional bracing is required for areas in yellow. Please consult with your qualified person and/or engineer.

Continuous-Run Scaffold

All areas below 25 lbs./sq. ft. (in yellow) do not meet OSHA requirements for a light-duty scaffold. OSHA 1926.451 (a) 6 in conjunction with non-mandatory Appendix A, define uniform loads for scaffold types.
Excel Modular Adjustable Bearer (Cont’d)

<table>
<thead>
<tr>
<th>Bearer</th>
<th>PB24</th>
<th>PB32</th>
<th>PB36</th>
<th>PB42</th>
<th>PB48</th>
<th>PB60</th>
<th>PB72</th>
<th>PB84</th>
<th>HL96</th>
<th>HL108</th>
<th>HL120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (inches)</td>
<td>24</td>
<td>32</td>
<td>36</td>
<td>42</td>
<td>48</td>
<td>60</td>
<td>72</td>
<td>84</td>
<td>96</td>
<td>108</td>
<td>120</td>
</tr>
<tr>
<td>TPB36</td>
<td>47</td>
<td>406</td>
<td>305</td>
<td>271</td>
<td>232</td>
<td>203</td>
<td>162</td>
<td>135</td>
<td>116</td>
<td>102</td>
<td>90</td>
</tr>
<tr>
<td>TPB48</td>
<td>59</td>
<td>250</td>
<td>188</td>
<td>167</td>
<td>143</td>
<td>125</td>
<td>100</td>
<td>83</td>
<td>71</td>
<td>63</td>
<td>56</td>
</tr>
<tr>
<td>TPB60</td>
<td>71</td>
<td>250</td>
<td>188</td>
<td>167</td>
<td>143</td>
<td>125</td>
<td>100</td>
<td>83</td>
<td>71</td>
<td>63</td>
<td>56</td>
</tr>
<tr>
<td>TPB72</td>
<td>83</td>
<td>196</td>
<td>147</td>
<td>131</td>
<td>112</td>
<td>98</td>
<td>79</td>
<td>65</td>
<td>56</td>
<td>49</td>
<td>44</td>
</tr>
<tr>
<td>TPB84</td>
<td>95</td>
<td>155</td>
<td>116</td>
<td>103</td>
<td>88</td>
<td>77</td>
<td>62</td>
<td>52</td>
<td>44</td>
<td>39</td>
<td>34</td>
</tr>
<tr>
<td>THL96</td>
<td>107</td>
<td>125</td>
<td>94</td>
<td>83</td>
<td>71</td>
<td>62</td>
<td>50</td>
<td>42</td>
<td>36</td>
<td>31</td>
<td>28</td>
</tr>
</tbody>
</table>

Chart shows the total allowable load per square foot (live load + dead load). Chart shows worst case scenario—adjustable bearer fully extended.

All areas below 25 lbs./sq. ft. do not meet OSHA requirements for a light-duty scaffold.

OSHA 1926.451 (a) 6 in conjunction with non-mandatory Appendix A, define uniform loads for scaffold types.

BUILD NOTES:
1. Bearer supports the boards.
2. Deck planking or vertical members may be the limiting load carrying member.

All material must be inspected prior to use! See inspection guidelines on page 112.
EXCEL MODULAR TRUSS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Length (inches)</th>
<th>Depth (inches)</th>
<th>Distance A/B (ft.)</th>
<th>Number of Stabilizers</th>
<th>Weight Galvanized (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR4</td>
<td>4' Truss</td>
<td>46</td>
<td>9.5</td>
<td>—</td>
<td>—</td>
<td>27</td>
</tr>
<tr>
<td>TR5</td>
<td>5' Truss</td>
<td>58</td>
<td>9.5</td>
<td>—</td>
<td>—</td>
<td>29</td>
</tr>
<tr>
<td>TR6</td>
<td>6' Truss</td>
<td>70</td>
<td>9.5</td>
<td>3</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>TR7</td>
<td>7' Truss</td>
<td>82</td>
<td>10.75</td>
<td>3.5</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>TR8</td>
<td>8' Truss</td>
<td>96</td>
<td>13.375</td>
<td>4</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>TR9</td>
<td>9' Truss</td>
<td>106</td>
<td>13.375</td>
<td>4.5</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>TR10</td>
<td>10' Truss</td>
<td>118</td>
<td>13.375</td>
<td>5</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>TR12</td>
<td>12' Truss</td>
<td>142</td>
<td>15</td>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>TR14</td>
<td>14' Truss</td>
<td>166</td>
<td>15</td>
<td>3.5</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>TR16</td>
<td>16' Truss</td>
<td>190</td>
<td>15</td>
<td>4</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>TR18</td>
<td>18' Truss</td>
<td>214</td>
<td>15</td>
<td>5</td>
<td>8</td>
<td>2</td>
</tr>
</tbody>
</table>

MATERIAL SPECS: All Excel load-bearing tubes are 1.90 diameter, 11-gauge (0.120 wall), high-strength min. 65,000 yield, 75,000 tensile.

BUILD NOTES:
1. Trusses should be installed in pairs and have side stabilizers installed. When the stabilizers cannot be installed tube and clamp should be placed as close to the stabilizer location as possible.
2. Single trusses can be installed if properly braced, tied back to an adjacent leg or structure, and approved by an engineer.

CAUTION: There is a pinch point when operating the trigger.

All material must be inspected prior to use! See inspection guidelines on page 112.
EXCEL MODULAR TRUSS (CONT’D)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Allowable Center Load (lbs.)</th>
<th>Allowable Uniform Load (lbs./ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR4</td>
<td>4’ Truss</td>
<td>3,000</td>
<td>1,500</td>
</tr>
<tr>
<td>TR5</td>
<td>5’ Truss</td>
<td>3,000</td>
<td>1,200</td>
</tr>
<tr>
<td>TR6</td>
<td>6’ Truss</td>
<td>2,750</td>
<td>910</td>
</tr>
<tr>
<td>TR7</td>
<td>7’ Truss</td>
<td>3,000</td>
<td>857</td>
</tr>
<tr>
<td>TR8</td>
<td>8’ Truss</td>
<td>3,500</td>
<td>875</td>
</tr>
<tr>
<td>TR9</td>
<td>9’ Truss</td>
<td>3,500</td>
<td>775</td>
</tr>
<tr>
<td>TR10</td>
<td>10’ Truss</td>
<td>3,500</td>
<td>700</td>
</tr>
<tr>
<td>TR12</td>
<td>12’ Truss</td>
<td>3,500</td>
<td>575</td>
</tr>
<tr>
<td>TR14</td>
<td>14’ Truss</td>
<td>3,000</td>
<td>428</td>
</tr>
<tr>
<td>TR16</td>
<td>16’ Truss</td>
<td>2,000</td>
<td>250</td>
</tr>
<tr>
<td>TR18</td>
<td>18’ Truss</td>
<td>2,000</td>
<td>220</td>
</tr>
</tbody>
</table>

BUILD NOTES:
1. Vertical leg may be the limiting load carrying member.
2. Center load is applied to the center four (4) inches of the truss.

All material must be inspected prior to use! See inspection guidelines on page 112.
All material must be inspected prior to use! See inspection guidelines on page 112.
EXCEL MODULAR TRUSS
MAXIMUM ALLOWABLE LOAD

<table>
<thead>
<tr>
<th>Bearer</th>
<th>Ledger Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PB24</td>
</tr>
<tr>
<td>Length (inches)</td>
<td>24</td>
</tr>
<tr>
<td>TR4</td>
<td>48</td>
</tr>
<tr>
<td>TR5</td>
<td>60</td>
</tr>
<tr>
<td>TR6</td>
<td>72</td>
</tr>
<tr>
<td>TR7</td>
<td>84</td>
</tr>
<tr>
<td>TR8</td>
<td>96</td>
</tr>
<tr>
<td>TR9</td>
<td>108</td>
</tr>
<tr>
<td>TR10</td>
<td>120</td>
</tr>
<tr>
<td>TR12</td>
<td>144</td>
</tr>
<tr>
<td>TR14</td>
<td>168</td>
</tr>
<tr>
<td>TR16</td>
<td>192</td>
</tr>
<tr>
<td>TR18</td>
<td>216</td>
</tr>
</tbody>
</table>

Chart shows the total allowable load per square foot (live load + dead load).

All areas below 25 lbs./sq. ft. do not meet OSHA requirements for a light-duty scaffold. OSHA 1926.451 (a) 6 in conjunction with non-mandatory Appendix A, define uniform loads for scaffold types.

BUILD NOTE: Deck planking or vertical members may be the limiting load carrying member.

All material must be inspected prior to use! See inspection guidelines on page 112.
18' TRUSS (1996–2010, RUN 1–RUN 45)

All material must be inspected prior to use! See inspection guidelines on page 112.

BUILD NOTES:
1. Trusses shall always be used in pairs.
2. Ledgers are to be placed at appropriate locations on the truss, as well as at all locking intermediate horizontal adapters.
3. Check the Excel Modular Scaffold Standard Component Technical Manual for load capacities of each truss, and consult with an engineer if it varies from the manual.
16' TRUSS (1996–2010, RUN 1–RUN 45)

Notes:
1. Trusses shall always be used in pairs.
2. Ledgers to be placed at appropriate locations on the truss, as well as at all locking intermediate horizontal adapters.
3. Check the Excel Modular Scaffold Standard Component Technical Manual for load capacities of each truss, and consult with an engineer if it varies from the manual.

BUILD NOTES:

All material must be inspected prior to use! See inspection guidelines on page 112.
14' TRUSS (1996-2010, RUN 1-RUN 45)

BUILD NOTES:
1. Trusses shall always be used in pairs.
2. Ledgers are to be placed at appropriate locations on the truss, as well as at all locking intermediate horizontal adapters.
3. Check the Excel Modular Scaffold Standard Component Technical Manual for load capacities of each truss, and consult with an engineer if it varies from the manual.

All material must be inspected prior to use! See inspection guidelines on page 112.
12' TRUSS (1996–2010, RUN 1–RUN 45)

BUILD NOTES:
1. Trusses shall always be used in pairs.
2. Ledgers are to be placed at appropriate locations on the truss, as well as at all locking intermediate horizontal adapters.
3. Check the Excel Modular Scaffold Standard Component Technical Manual for load capacities of each truss, and consult with an engineer if it varies from the manual.

All material must be inspected prior to use!
See inspection guidelines on page 112.
18' TRUSS (2011–CURRENT, RUN 46–RUN 60)

1. Trusses shall always be used in pairs.
2. Ledgers are to be placed at appropriate locations on the truss, as well as at all locking intermediate horizontal adapters.
3. Check the Excel Modular Scaffold Standard Component Technical Manual for load capacities of each truss, and consult with an engineer if it varies from the manual.

BUILD NOTES:

All material must be inspected prior to use!

See inspection guidelines on page 112.
16' TRUSS (2011–CURRENT, RUN 46–RUN 60)

16'-0" Truss Center Spacing

16'-0" Truss Combinations

BUILD NOTES:
1. Trusses shall always be used in pairs.
2. Ledgers are to be placed at appropriate locations on the truss, as well as at all locking intermediate horizontal adapters.
3. Check the Excel Modular Scaffold Standard Component Technical Manual for load capacities of each truss, and consult with an engineer if it varies from the manual.

All material must be inspected prior to use!
See inspection guidelines on page 112.
14' TRUSS *(2011–CURRENT, RUN 46–RUN 60)*

Build Notes:

1. Trusses shall always be used in pairs.
2. Ledgers are to be placed at appropriate locations on the truss, as well as at all locking intermediate horizontal adapters.
3. Check the Excel Modular Scaffold Standard Component Technical Manual for load capacities of each truss, and consult with an engineer if it varies from the manual.

All material must be inspected prior to use! See inspection guidelines on page 112.
12' TRUSS (2011–CURRENT, RUN 46–RUN 60)

BUILD NOTES:
1. Trusses shall always be used in pairs.
2. Ledgers are to be placed at appropriate locations on the truss, as well as at all locking intermediate horizontal adapters.
3. Check the Excel Modular Scaffold Standard Component Technical Manual for load capacities of each truss, and consult with an engineer if it varies from the manual.

All material must be inspected prior to use! See inspection guidelines on page 112.
EXCEL MODULAR

DIAGONAL SWIVEL BRACE

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Fits Post Spacing (inches)</th>
<th>Tube Length (inches)</th>
<th>Weight Galvanized (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSB</td>
<td>Diagonal Swivel Brace</td>
<td>36 - 108</td>
<td>65</td>
<td>24.8</td>
</tr>
</tbody>
</table>

Bearer Description

<table>
<thead>
<tr>
<th>Bearer Description</th>
<th>Hole Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>3' Bearer</td>
<td>Hole #1</td>
</tr>
<tr>
<td>42" Bearer</td>
<td>Hole #2</td>
</tr>
<tr>
<td>4' Bearer, 5 Plank Bearer</td>
<td>Hole #3</td>
</tr>
<tr>
<td>5' Bearer, 6 Plank Bearer</td>
<td>Hole #4</td>
</tr>
<tr>
<td>6' Bearer</td>
<td>Hole #5</td>
</tr>
<tr>
<td>7' Bearer</td>
<td>Hole #6</td>
</tr>
<tr>
<td>8' Ledger</td>
<td>Hole #7</td>
</tr>
<tr>
<td>9' Ledger</td>
<td>Hole #8</td>
</tr>
</tbody>
</table>

BUILD NOTES:

1. A bottom wrap is required within one (1) foot of the bottom connection of the diagonal.
2. For 10-foot bays, use pin bracing (pg. 33) or 13-foot tube and four (4) swivel clamps.
3. Only one (1) deck allowed on cantilevers utilizing diagonal swivel braces.

MATERIAL SPECS:

1. Inner length is the length of tubing required to manufacture the inner tube.
2. Outer length is the length of tubing required to manufacture the outer tube.
3. Hole location is the location of the spacing holes, measured from the swivel connector pin.

Clamp bolts should have between 40 and 65 lbs. tension. Overtightening could damage the threads, bolt or item the clamp is attached to.

CAUTION: There is a pinch point at the clamps and where both parts telescope.

The diagonal swivel brace has a half clamp on each end and adjusts to fit scaffolds from three (3) feet to nine (9) feet.

All material must be inspected prior to use! See inspection guidelines on page 112.
Excel Modular Diagonal Pin Brace

The Excel Modular diagonal pin brace is designed to be a multipurpose brace. It has standard swivel clamps on each end, so it can be fastened to any scaffold vertical or horizontal. These braces are also drilled and fitted, so a standard vertical pin can be used to connect two or more braces together. This may be desirable when there is a need to brace longer structures up to 14 feet.

BUILD NOTE: When more than one (1) brace is used, the brace should be tied, when possible, in the middle with #9 wire or equivalent to a horizontal, vertical or another diagonal. When braces are connected together, the middle clamps may or may not be used.

Table of Products

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Single Fits Post Spacing (inches)</th>
<th>Double Fits Post Spacing (inches)</th>
<th>Length (inches)</th>
<th>Weight Galvanized (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPB</td>
<td>Diagonal Pin Brace</td>
<td>24 - 84</td>
<td>96 - 168</td>
<td>108</td>
<td>24</td>
</tr>
<tr>
<td>SDPB</td>
<td>Short Diagonal Pin Brace</td>
<td>Horizoneal Bracing</td>
<td>48</td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

Bearer Description

<table>
<thead>
<tr>
<th>Bearer Description</th>
<th>X Coordinate</th>
<th>Y Coordinate</th>
</tr>
</thead>
<tbody>
<tr>
<td>24" Bearer, 2-Plank Bearer</td>
<td>24</td>
<td>105.30</td>
</tr>
<tr>
<td>32" Bearer, 3-Plank Bearer</td>
<td>32</td>
<td>103.15</td>
</tr>
<tr>
<td>36" Bearer</td>
<td>36</td>
<td>101.82</td>
</tr>
<tr>
<td>42" Bearer, 4-Plank Bearer</td>
<td>42</td>
<td>99.5</td>
</tr>
<tr>
<td>48" Bearer, 5-Plank Bearer</td>
<td>48</td>
<td>96.75</td>
</tr>
<tr>
<td>60" Bearer, 6-Plank Bearer</td>
<td>60</td>
<td>89.8</td>
</tr>
<tr>
<td>6' Bearer</td>
<td>72</td>
<td>80.5</td>
</tr>
<tr>
<td>7' Bearer</td>
<td>84</td>
<td>67.88</td>
</tr>
<tr>
<td>8' Ledger</td>
<td>96</td>
<td>193.49</td>
</tr>
<tr>
<td>9' Ledger</td>
<td>108</td>
<td>187.06</td>
</tr>
<tr>
<td>10' Ledger</td>
<td>120</td>
<td>179.6</td>
</tr>
<tr>
<td>12' Truss</td>
<td>144</td>
<td>161</td>
</tr>
<tr>
<td>14' Truss</td>
<td>168</td>
<td>135.76</td>
</tr>
</tbody>
</table>

All material must be inspected prior to use! See inspection guidelines on page 112.
The short diagonal pin brace can be used to provide additional support to horizontal bearers or to extend the length of a diagonal pin brace for use on a 10-foot wide scaffold.

Excel's diagonal pin brace can also be used as a vertical to pass through a congested area, such as a pipe rack or cable tray.

When used as a vertical, the diagonal pin brace must be supported by tube and clamp, braces or tied, so there is never more than 69 inches of unsupported vertical.

MATERIAL SPECS:

1. All tubing is 1.90 diameter, 11-gauge (0.120 wall), high-strength, minimum 65,000 yield, and 75,000 tensile.
2. Diagonal pin braces are designed to be compatible with standard 1.90 OD tube and clamp material.

- Clamp bolts should have between 40 and 65 lbs. tension. Overtightening could damage the threads, bolt or item the clamp is attached to.

CAUTION: There is a pinch point at the clamps and where the parts pin together.

<table>
<thead>
<tr>
<th>Unbraced Post Length (inches)</th>
<th>Maximum Allowable Compressive Load When Rated for Scaffold Use (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>69 (5.75 ft.)</td>
<td>6,986</td>
</tr>
<tr>
<td>46 (3.83 ft.)</td>
<td>8,230</td>
</tr>
<tr>
<td>23 (1.91 ft.)</td>
<td>8,690</td>
</tr>
</tbody>
</table>

Chart above is based off of pin bracing when used in the vertical position to increase leg loads. Numbers shown are the compressive load of the vertical and pin brace together.

All material must be inspected prior to use! See inspection guidelines on page 112.
EXCEL MODULAR
DIAGONAL COMBINATION BRACE
(NO LONGER IN PRODUCTION)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Fits Post Spacing (inches)</th>
<th>Tube Length (inches)</th>
<th>Weight Galvanized (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCB</td>
<td>Diagonal Combination Brace</td>
<td>42 - 108</td>
<td>65</td>
<td>29</td>
</tr>
</tbody>
</table>

Bearer Description

- **42” Bearer**
 Hole #1
- **4’ Bearer, 5-Plank Bearer**
 Hole #2
- **5’ Bearer, 6-Plank Bearer**
 Hole #3
- **6’ Bearer**
 Hole #4
- **7’ Bearer**
 Hole #5
- **8’ Ledger**
 Hole #6

The combination brace has a trigger on one end and a half clamp on the other. It is adjustable to fit scaffolds from 42 inches to nine (9) feet.

MATERIAL SPECS:

1. Inner length is the length of tubing required to manufacture the inner tube.
2. Outer length is the length of tubing required to manufacture the outer tube.
3. Hole location is the location of the spacing holes, measured from the swivel connector pin.
4. The Excel end connector must be installed at the base of the cantilever.

CAUTION: There is a pinch point at the clamps and where both parts telescope.

All material must be inspected prior to use! See inspection guidelines on page 112.

EMSLC-TSM-1001 37 Revised: 08/01/06
EXCEL MODULAR
DIAGONAL EXTENDABLE BRACE
(NO LONGER IN PRODUCTION)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Fits Post Spacing (inches)</th>
<th>Tube Length (inches)</th>
<th>Weight Galvanized (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEB</td>
<td>Diagonal Extendable Brace</td>
<td>48 - 108</td>
<td>65</td>
<td>29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bearer Description</th>
<th>X Coordinate</th>
<th>Y Coordinate</th>
<th>Hole Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>4' Bearer, 5-Plank Bearer</td>
<td>48</td>
<td>58.92</td>
<td>Hole #1</td>
</tr>
<tr>
<td>5' Bearer, 6-Plank Bearer</td>
<td>60</td>
<td>58.07</td>
<td>Hole #2</td>
</tr>
<tr>
<td>6' Bearer</td>
<td>72</td>
<td>57.27</td>
<td>Hole #3</td>
</tr>
<tr>
<td>7' Bearer</td>
<td>84</td>
<td>56.53</td>
<td>Hole #4</td>
</tr>
<tr>
<td>8' Ledger</td>
<td>96</td>
<td>56.71</td>
<td>Hole #4</td>
</tr>
<tr>
<td>9' Ledger</td>
<td>108</td>
<td>27.72</td>
<td>Hole #6</td>
</tr>
</tbody>
</table>

Diagonal extendable braces have a trigger on each end and adjust to fit bay sizes from 48 inches to 108 inches. They fit in line with the horizontals two (2) cups below and above the standard board wraps.

MATERIAL SPECS:
1. Inner length is the length of tubing required to manufacture the inner tube.
2. Outer length is the length of tubing required to manufacture the outer tube.
3. Hole location is the location of the spacing holes, measured from the swivel connector pin.

CAUTION: There is a pinch point when closing the trigger and where both parts telescope.

All material must be inspected prior to use! See inspection guidelines on page 112.
EXCEL MODULAR RIGHT-ANGLE BRACE

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Weight (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAB</td>
<td>Right-Angle Brace</td>
<td>3.5</td>
</tr>
</tbody>
</table>

A right-angle brace is used to ensure the scaffold stays square or to provide additional corner support for the end connectors.

Right-angle braces can be used to support a stand-off (90 degree) ladder access.

Right-angle braces can be used for ladder additions or bracing on scaffolds with casters.

Right-angle braces can be used to replace tube and clamp when installed to prevent the end connector from rotating around the cup.

BUILD NOTE: Braces must have bolts.

All material must be inspected prior to use! See inspection guidelines on page 112.
EXCEL MODULAR SCAFFOLD
GENERAL GUIDELINES FOR BRACING

The following bracing recommendations are for all non-seismic scaffolding built using Excel scaffold components. Bracing and/or tying should be applied to any scaffold where the top of the scaffold has movement of more than six (6) inches in any direction. The bracing should be placed to run in opposite directions on opposing sides. It may be zigzagged or run in the same direction. (See normal bracing diagram pg. 39.)

Horizontal bracing that is attached diagonally from vertical to vertical under the board deck should be placed every third deck when possible.

Single-bay scaffolds should be braced on a minimum of two (2) sides and when feasible on all four (4) sides, starting at the bottom and continuing to a minimum of 10 feet from the top of the scaffold.

All other bay configurations require bracing placed on one (1) bay for every 30 feet of scaffold (generally every 4th bay). At a minimum, bracing should be placed on the inside and outside row of the scaffolding verticals, starting at the bottom and continuing to a minimum of 10 feet from the top of the scaffold.

Scaffolds that contain side brackets or outriggers, where there is a possibility of tipping, must also be braced or tied with tube and clamp to plant approved structural steel components (i.e., I-beams, handrails, grating, etc.)

Additional bracing recommendations for light-duty scaffold:

Bay widths of 42 inches and less, that are less than 20 feet tall, may not require bracing. The special truss design of Excel horizontals provides the necessary bracing. Scaffolds above 20 feet tall should be braced using clamp braces or tube and clamp applied to the bottom of the scaffold, leaving an unbraced height of 20 feet or less. (Bracing should always be added if there is excessive movement of the scaffold structure.)

Scaffolds with a deck height less than 10 feet do not require bracing provided they are tied off with tube and clamp to plant approved structural steel components (i.e., I-beams, handrails, grating, etc.).

Additional bracing recommendations for medium- and heavy-duty scaffold:

Heavy-duty scaffolds should have as much bracing as required to meet the desired loading. Bracing and/or tying should be placed on all sides of the scaffold. Multi-bay scaffolds should have bracing on every other bay, front, middle and back rows. (See heavy-duty bracing diagram pg. 39.)

WARNING: Heavy-duty scaffolds require additional bracing. Please consult with your qualified person and/or engineer.
BUILD NOTES:
1. When attaching diagonal bracing, ensure it is within one (1) foot of the closest horizontal node points.
2. Angle is most effective between 30 and 60 degrees between brace and horizontal.

All material must be inspected prior to use! See inspection guidelines on page 112.
Excel Modular Board Bracket and Side Bracket

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Effective Width (inches)</th>
<th>Net Width (inches)</th>
<th>Overall Width</th>
<th>Overall Height</th>
<th>Weight Galvanized (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB12</td>
<td>12" Board Bracket</td>
<td>12</td>
<td>11</td>
<td>—</td>
<td>—</td>
<td>4.8</td>
</tr>
<tr>
<td>BB12-L</td>
<td>12" Board Bracket Locking</td>
<td>12</td>
<td>11</td>
<td>—</td>
<td>—</td>
<td>5</td>
</tr>
<tr>
<td>SB24</td>
<td>2' Side Bracket (with pin)</td>
<td>24</td>
<td>20.5</td>
<td>26</td>
<td>19.5</td>
<td>14.5</td>
</tr>
<tr>
<td>SB32</td>
<td>32" Side Bracket (with pin)</td>
<td>32</td>
<td>30.5</td>
<td>34</td>
<td>19.5</td>
<td>21.2</td>
</tr>
<tr>
<td>SB36</td>
<td>3' Side Bracket (with pin)</td>
<td>36</td>
<td>34.5</td>
<td>38</td>
<td>19.5</td>
<td>23.3</td>
</tr>
</tbody>
</table>

Excel side brackets provide an easy alternative to secure knee-outs from one (1) to three (3) feet.

The only difference between the two board brackets is the 12-inch board bracket locking has a locking pin to hold the boards down.

MATERIAL SPECS: All tubing is 1.90 diameter, 11-gauge (0.120 wall), high-strength, minimum 65,000 yield, and 75,000 tensile.

CAUTION: There is a pinch point when closing the trigger.

Check that the vertical pin is properly secured before handling.

All material must be inspected prior to use! See inspection guidelines on page 112.
EXCEL MODULAR BOARD BRACKET

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Maximum Uniform Load (lbs. per ft.)</th>
<th>Maximum Load on End (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB12</td>
<td>12" Board Bracket</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>BB12-L</td>
<td>12" Board Bracket Locking</td>
<td>500</td>
<td>500</td>
</tr>
</tbody>
</table>

BUILD NOTES:
1. The board brackets shall not be used as a handrail or mid-rail.
2. When used as a board deck, there must be a wall or other obstruction within four (4) inches to prevent falling.

CAUTION: There is a pinch point when closing the trigger and at the locking pin of the 12-inch board bracket locking.

All material must be inspected prior to use! See inspection guidelines on page 112.
EXCEL MODULAR SIDE BRACKET

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Maximum Uniform Load (lbs. per ft.)</th>
<th>Maximum Load on End (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB24</td>
<td>2' Side Bracket (with pin)</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>SB32</td>
<td>32" Side Bracket (with pin)</td>
<td>400</td>
<td>500</td>
</tr>
<tr>
<td>SB36</td>
<td>3' Side Bracket (with pin)</td>
<td>330</td>
<td>500</td>
</tr>
</tbody>
</table>

The bottom horizontal, used for support bracing, is only required for heavy-duty scaffolds or scaffolds with two (2) or more decks above the side bracket.

BUILD NOTE: Only verticals required for handrails and mid-rails should be added.

WARNING: Only one (1) deck can be supported by any side bracket without any additional bracing.

CAUTION: There is a pinch point when closing the trigger.
EXCEL MODULAR SIDE BRACKET AND CANTILEVER DECK LOADING

Chart shows the total allowable load per square foot (live load + dead load).

<table>
<thead>
<tr>
<th>Bearer</th>
<th>Ledger Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PB24</td>
</tr>
<tr>
<td></td>
<td>Length (inches)</td>
</tr>
<tr>
<td>BB12</td>
<td>12</td>
</tr>
<tr>
<td>SB24</td>
<td>24</td>
</tr>
<tr>
<td>SB32</td>
<td>32</td>
</tr>
<tr>
<td>SB36</td>
<td>36</td>
</tr>
<tr>
<td>PB42</td>
<td>42</td>
</tr>
<tr>
<td>PB48</td>
<td>48</td>
</tr>
<tr>
<td>PB60</td>
<td>60</td>
</tr>
</tbody>
</table>

All areas below 25 lbs./sq. ft. (in yellow) do not meet OSHA requirements for a light-duty scaffold. OSHA 1926.451 (a) 6 in conjunction with non-mandatory Appendix A, define uniform loads for scaffold types.

BUILD NOTES:
1. Deck planking or vertical members may be the limiting load carrying member.
2. Stability of the scaffold to prevent tipping must be considered when using any side bracket cantilever design.

WARNING: Additional bracing is required for areas in yellow. Please consult with your qualified person and/or engineer.

All material must be inspected prior to use! See inspection guidelines on page 112.
EXCEL MODULAR SIDE BRACKET AND CANTILEVER MAX DECK LOADING

<table>
<thead>
<tr>
<th>Bearer</th>
<th>PB24</th>
<th>PB32</th>
<th>PB36</th>
<th>PB42</th>
<th>PB48</th>
<th>PB60</th>
<th>PB72</th>
<th>PB84</th>
<th>HL96</th>
<th>HL108</th>
<th>HL120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (inches)</td>
<td>24</td>
<td>32</td>
<td>36</td>
<td>42</td>
<td>48</td>
<td>60</td>
<td>72</td>
<td>84</td>
<td>96</td>
<td>108</td>
<td>120</td>
</tr>
<tr>
<td>BB12</td>
<td>12</td>
<td>500</td>
<td>375</td>
<td>333</td>
<td>286</td>
<td>250</td>
<td>200</td>
<td>167</td>
<td>143</td>
<td>125</td>
<td>111</td>
</tr>
<tr>
<td>SB24</td>
<td>24</td>
<td>250</td>
<td>188</td>
<td>167</td>
<td>143</td>
<td>125</td>
<td>100</td>
<td>83</td>
<td>71</td>
<td>63</td>
<td>56</td>
</tr>
<tr>
<td>SB32</td>
<td>32</td>
<td>200</td>
<td>150</td>
<td>133</td>
<td>114</td>
<td>100</td>
<td>80</td>
<td>67</td>
<td>57</td>
<td>50</td>
<td>44</td>
</tr>
<tr>
<td>SB36</td>
<td>36</td>
<td>165</td>
<td>124</td>
<td>110</td>
<td>94</td>
<td>83</td>
<td>66</td>
<td>55</td>
<td>47</td>
<td>41</td>
<td>37</td>
</tr>
<tr>
<td>PB42</td>
<td>42</td>
<td>143</td>
<td>107</td>
<td>95</td>
<td>81</td>
<td>71</td>
<td>57</td>
<td>48</td>
<td>41</td>
<td>36</td>
<td>32</td>
</tr>
<tr>
<td>PB48</td>
<td>48</td>
<td>125</td>
<td>94</td>
<td>83</td>
<td>71</td>
<td>63</td>
<td>50</td>
<td>42</td>
<td>36</td>
<td>31</td>
<td>28</td>
</tr>
<tr>
<td>PB60</td>
<td>60</td>
<td>100</td>
<td>75</td>
<td>67</td>
<td>57</td>
<td>50</td>
<td>40</td>
<td>33</td>
<td>29</td>
<td>25</td>
<td>22</td>
</tr>
</tbody>
</table>

Chart shows the total allowable load per square foot (live load + dead load).

Standard board layout using the side bracket cantilever as the bearer.

WARNING: Additional bracing is required for areas in yellow. Please consult with your qualified person and/or engineer.

All areas below 25 lbs./sq. ft. (in yellow) do not meet OSHA requirements for a light-duty scaffold. OSHA 1926.451 (a) 6 in conjunction with non-mandatory Appendix A, define uniform loads for scaffold types.

BUILD NOTES:
1. Bearer supports the boards.
2. Deck planking or vertical members may be the limiting load carrying member.
3. Stability of the scaffold to prevent tipping must be considered when using any side bracket cantilever design.

All material must be inspected prior to use! See inspection guidelines on page 112.
EXCEL MODULAR FOLDING SIDE BRACKET

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Weight (lbs.)</th>
<th>Maximum Uniform Load (lbs. per ft.)</th>
<th>Maximum Load on End (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSB48</td>
<td>4' Folding Side Bracket</td>
<td>29.5</td>
<td>250</td>
<td>500</td>
</tr>
<tr>
<td>FSB60</td>
<td>5' Folding Side Bracket</td>
<td>33</td>
<td>200</td>
<td>500</td>
</tr>
<tr>
<td>FSB72</td>
<td>6' Folding Side Bracket</td>
<td>41.5</td>
<td>166</td>
<td>500</td>
</tr>
</tbody>
</table>

Excel folding side brackets are designed to provide scaffold deck extensions out to six (6) feet. They are also designed to fold up, so that they can be used inside vessels or places with narrow access where a normal side bracket will not fit.

Only two (2) folding side brackets can be used together. They cannot be placed on multiple scaffold bays to create a continuous deck.

The maximum deck width allowed is seven (7) feet.

Only one (1) work deck can be supported by any folding side bracket.

MATERIAL NOTE: All tubing is 1.90 diameter, 11-gauge (0.120 wall), high-strength, minimum 65,000 yield, and 75,000 tensile.

CAUTION: This item contains multiple pinch points.

All material must be inspected prior to use!
See inspection guidelines on page 112.
The scaffold supporting a folding side bracket must be properly braced and secured.

Horizontal bars must be placed at the deck location and a support bar must be placed at the diagonal connection.

BUILD NOTES:
1. All scaffolds using a folding side bracket MUST be secured to a permanent structure. The minimum requirement for tying is two (2) pieces of tube and clamp secured with beam clamps from a vertical on the opposite side of the scaffold to a permanent structure.
2. This is in addition to tying required by Federal, State or local regulations.
3. **The scaffold must be secured before the side brackets are installed.**
4. There is no width requirement of the scaffold the folding side bracket is being attached to because the scaffold MUST be secured to a permanent structure to prevent tipping.

All material must be inspected prior to use! See inspection guidelines on page 112.
EXCEL MODULAR FOLDING SIDE BRACKET INSTALLATION (CONT’D)

1. Unfold bracket letting all but the top end connector hang to the ground before locking connector at desired deck location.

2. Person below then raises lower end connector attaching it to appropriate height where top bar becomes level.

3. Repeat processes with identical sized bracket before squaring them to scaffold.

 Squaring is easily done by gently shaking the bracket allowing it to rotate on cups.

CAUTION: Pinch point between trigger guard and tube. Person below assists to prevent bracket from falling or crushing installers hand.

 Always use proper tie off when handling side brackets.

All material must be inspected prior to use!
See inspection guidelines on page 112.
EXCEL MODULAR FOLDING
SIDE BRACKET INSTALLATION (CONT’D)

4 Properly seat boards to inside of brackets before sliding out to far edge. Continue process one at a time until fully decked.

5 Once decking is completed, install two (2) eight-cup verticals for handrail posts.

6 Complete by enclosing side rails (same length as bracket), then end rails (same as deck length) and finally adding the toe boards.

All material must be inspected prior to use! See inspection guidelines on page 112.

Always use proper tie off when handling side brackets.
EXCEL MODULAR FOLDING SIDE BRACKET LOADING

<table>
<thead>
<tr>
<th>Bearer</th>
<th>PB24</th>
<th>PB32</th>
<th>PB36</th>
<th>PB42</th>
<th>PB48</th>
<th>PB60</th>
<th>PB72</th>
<th>PB84</th>
<th>HL96</th>
<th>HL108</th>
<th>HL120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (inches)</td>
<td>24</td>
<td>32</td>
<td>36</td>
<td>42</td>
<td>48</td>
<td>60</td>
<td>72</td>
<td>84</td>
<td>96</td>
<td>108</td>
<td>120</td>
</tr>
<tr>
<td>FSB48</td>
<td>48</td>
<td>109</td>
<td>82</td>
<td>73</td>
<td>63</td>
<td>55</td>
<td>44</td>
<td>36</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSB60</td>
<td>60</td>
<td>88</td>
<td>66</td>
<td>58</td>
<td>50</td>
<td>44</td>
<td>35</td>
<td>29</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSB72</td>
<td>72</td>
<td>88</td>
<td>66</td>
<td>58</td>
<td>50</td>
<td>44</td>
<td>35</td>
<td>29</td>
<td>25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Multiple-bay design is **NEVER** allowed.

All areas below 25 lbs./sq. ft. do not meet OSHA requirements for a light-duty scaffold. OSHA 1926.451 (a) 6 in conjunction with non-mandatory Appendix A, define uniform loads for scaffold types. Deck planking or vertical members may be the limiting load carrying member.

BUILD NOTES:
1. Bearer supports the boards.
2. Scaffold must be properly braced when using folding side brackets.
3. Stability of the scaffold to prevent tipping must be considered when using any side bracket cantilever, folding side bracket design.

All material must be inspected prior to use! See inspection guidelines on page 112.

This is the only acceptable design.
INTERMEDIATE AND HEAVY-DUTY INTERMEDIATE HORIZONTAL ADAPTERS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Weight (lbs.)</th>
<th>Maximum Vertical Load (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IHA</td>
<td>Intermediate Horizontal Adapter</td>
<td>2</td>
<td>1,500</td>
</tr>
<tr>
<td>IHA-HD</td>
<td>Heavy-Duty Intermediate Horizontal Adapter</td>
<td>18</td>
<td>2,000</td>
</tr>
</tbody>
</table>

Intermediate Horizontal Adapter and Heavy-Duty Intermediate Horizontal Adapter can be used to install a shortened board deck or handrails in the middle of an existing horizontal or truss. The load carrying capacity of the board deck is limited by the maximum allowable center load for the existing horizontal. Always deck to existing horizontal for greater load carrying ability.

Intermediate horizontal adapters and heavy-duty intermediate horizontal adapters should be used in sets, adding a horizontal that is used to provide additional support. Only a 10-cup leg or shorter may be used on top of an intermediate horizontal adapter, unless additional bracing is used. The bottom support and one (1) intermediate horizontal adapter can be replaced with other equivalent support (i.e., a horizontal at the first cup of the vertical on top of the intermediate horizontal adapter or tube and clamp bracing).

CAUTION: Do not pass material to another employee with the intermediate horizontal adapter attached.

BUILD NOTES:
1. When an intermediate horizontal adapter is supporting a board deck, the deck load must be limited to light-duty only.
2. Heavy-duty intermediate adapters installed with only two (2) handrails must be used in sets. Heavy-duty intermediate horizontal adapters can be used with only two (2) horizontals connected on the vertical. Heavy-duty intermediate horizontal adapters are not compatible with normal intermediate horizontal adapters.

All material must be inspected prior to use! See inspection guidelines on page 112.
The locking intermediate horizontal adapter is designed to replace both the intermediate horizontal adapter and the heavy-duty intermediate horizontal adapter. It provides a stronger connection, safer assembly and more flexibility than its predecessors.

The locking intermediate horizontal adapter can be used in any application that an intermediate horizontal adapter and the heavy-duty intermediate horizontal adapter can be used.

The locking intermediate horizontal adapter does not require a second intermediate horizontal adapter or another locking intermediate horizontal adapter on the opposite side of the scaffold. A lower horizontal can be installed to provide the needed support.

The locking intermediate horizontal adapter contains a locking button that prevents the adapter and the attached vertical from falling off the horizontal during assembly and disassembly.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Weight (lbs.)</th>
<th>Maximum Vertical Load (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IHA-L</td>
<td>Locking Intermediate Horizontal Adapter</td>
<td>18</td>
<td>2,000</td>
</tr>
</tbody>
</table>
BRACING EXCEL HORIZONTAL BARS
WITH LOCKING INTERMEDIATE HORIZONTAL ADAPTER

<table>
<thead>
<tr>
<th>Description</th>
<th>Vertical Post Spacing (inches)</th>
<th>Allowable Center Load</th>
<th>Allowable Uniform Load (1 Brace 18" from Center)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>lbs.</td>
<td>lbs.</td>
</tr>
<tr>
<td>60" Bearer, 6-Plank Bearer</td>
<td>60</td>
<td>1,250</td>
<td>2,500</td>
</tr>
<tr>
<td>6' Bearer</td>
<td>72</td>
<td>1,060</td>
<td>2,120</td>
</tr>
<tr>
<td>7' Bearer</td>
<td>84</td>
<td>820</td>
<td>1,640</td>
</tr>
<tr>
<td>Horizontal Ledger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8' Ledger</td>
<td>96</td>
<td>640</td>
<td>1,280</td>
</tr>
<tr>
<td>9' Ledger</td>
<td>108</td>
<td>550</td>
<td>1,100</td>
</tr>
<tr>
<td>10' Ledger</td>
<td>120</td>
<td>500</td>
<td>1,000</td>
</tr>
</tbody>
</table>

A locking intermediate horizontal adapter can be added to Excel horizontal bars when greater strength is required.

A locking intermediate horizontal adapter will NOT provide any additional support for uplift.

The locking intermediate horizontal adapter must be placed within four (4) inches of either side of the center of the horizontal.

BUILD NOTE:
1. Vertical leg may be the limiting load carrying member.
2. Horizontal bracing adds additional torque to the verticals, which must be considered when building heavy-duty or tall scaffolds.
3. Center load is applied to the center four (4) inches of the bearer or ledger.

All material must be inspected prior to use!
See inspection guidelines on page 112.
EXCEL MODULAR LOCKING INTERMEDIATE HORIZONTAL ADAPTER
FOR SAFETY GATE ACCESS

<table>
<thead>
<tr>
<th>Description Spacing for VP8 & IHA-L When Used with 36" Safety Gate</th>
<th>Top Handrail Length (inches)</th>
<th>Load at Top of VP8 (lbs.)</th>
<th>Recommended Additional Bracing Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>2' Bearer+3' SG2 = 5' Bay</td>
<td>24</td>
<td>200</td>
<td>RAB</td>
</tr>
<tr>
<td>3' Bearer+3' SG2 = 6' Bay</td>
<td>36</td>
<td>200</td>
<td>RAB or RAS-SGA</td>
</tr>
<tr>
<td>4' Bearer+3' SG2 = 7' Bay</td>
<td>48</td>
<td>200</td>
<td>RAS-SGA or Tube and clamp</td>
</tr>
<tr>
<td>5' Bearer+3' SG2 = 8' Bay</td>
<td>60</td>
<td>200</td>
<td>RAS-SGA or Tube and clamp</td>
</tr>
<tr>
<td>6' Bearer+3' SG2 = 9' Bay</td>
<td>72</td>
<td>200</td>
<td>RAS-SGA or Tube and clamp</td>
</tr>
<tr>
<td>7' Bearer+3' SG2 = 10' Bay</td>
<td>84</td>
<td>200</td>
<td>RAS-SGA or Tube and clamp</td>
</tr>
</tbody>
</table>

RAB = Right Angle Brace RAS-SGA = Rapid Access System Safety Gate Adapter (See Custom Component Manual)

32-Inch to 7-Foot Handrail with
Rapid Access Safety Gate Adapter
(Optional for Additional Support)

2-Foot Handrail with Right-Angle Brace
(Optional for Additional Support)

32-Inch to 7-Foot Handrail with Tube and Clamp
(Optional for Additional Support)

BUILD NOTES:
1. Vertical leg may have significant play without the installation of one the recommended additional bracings listed above.
2. When using 24-inch bearers for top handrail, a right-angle brace should be used due to the configuration of the component.

All material must be inspected prior to use!
See inspection guidelines on page 112.
The intermediate horizontal adapter w/clamp can be used like a regular intermediate horizontal adapter. The loading and installation requirements are the same as the intermediate horizontal adapter (pg 50).

The intermediate horizontal adapter w/clamp should be used in sets, adding a tube that is used to provide additional support. The bottom support and one intermediate horizontal adapter w/clamp can be replaced with other equivalent support.

The maximum load that can be placed on the intermediate horizontal adapter w/clamp is equal to the maximum center load of the horizontal or truss it is installed on, or the rated load of the intermediate horizontal adapter w/clamp, whichever is less. Only a 10-cup leg or shorter may be used on top of a horizontal adapter unless additional bracing is used.

BUILD NOTES:
1. To install the intermediate horizontal adapter w/clamp, attach both connectors to the horizontal and then slide a piece of tube under the deck through the clamps as shown.
2. **When an intermediate horizontal adapter w/clamp is supporting a board deck, the deck load must be limited to light-duty only.**
3. Horizontal supports must be installed as defined for intermediate horizontal adapters.
4. Intermediate horizontal adapters w/clamps should never be used to support rigging.

Clamp bolts should have between 40 and 65 lbs. tension. Overtightening could damage the threads, bolt or item the clamp is attached to.

CAUTION: Do not pass material to another employee with the intermediate horizontal adapter w/clamp attached.
EXCEL MODULAR STEEL PLANKS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Width (inches)</th>
<th>Weight (lbs.)</th>
<th>Uniform Load (lbs./ft.)</th>
<th>Center Load (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>2’ Plank</td>
<td>9</td>
<td>11.5</td>
<td>271</td>
<td>600</td>
</tr>
<tr>
<td>32</td>
<td>32” Plank</td>
<td>9</td>
<td>13</td>
<td>271</td>
<td>600</td>
</tr>
<tr>
<td>36</td>
<td>3’ Plank</td>
<td>9</td>
<td>16</td>
<td>271</td>
<td>600</td>
</tr>
<tr>
<td>42</td>
<td>3.5’ Plank</td>
<td>9</td>
<td>18</td>
<td>232</td>
<td>546</td>
</tr>
<tr>
<td>48</td>
<td>4’ Plank</td>
<td>9</td>
<td>18.8</td>
<td>213</td>
<td>520</td>
</tr>
<tr>
<td>60</td>
<td>5’ Plank</td>
<td>9</td>
<td>23.5</td>
<td>185</td>
<td>480</td>
</tr>
<tr>
<td>72</td>
<td>6’ Plank</td>
<td>9</td>
<td>28.5</td>
<td>105</td>
<td>388</td>
</tr>
<tr>
<td>84</td>
<td>7’ Plank</td>
<td>9</td>
<td>30.5</td>
<td>100</td>
<td>322</td>
</tr>
<tr>
<td>96</td>
<td>8’ Plank</td>
<td>9</td>
<td>37.5</td>
<td>93</td>
<td>284</td>
</tr>
<tr>
<td>108</td>
<td>9’ Plank</td>
<td>9</td>
<td>41.5</td>
<td>69</td>
<td>250</td>
</tr>
<tr>
<td>120</td>
<td>10’ Plank</td>
<td>9</td>
<td>46.5</td>
<td>58</td>
<td>233</td>
</tr>
<tr>
<td>624</td>
<td>6” x 2’ Plank</td>
<td>6</td>
<td>10.5</td>
<td>271</td>
<td>600</td>
</tr>
<tr>
<td>632</td>
<td>6” x 32” Plank</td>
<td>6</td>
<td>12</td>
<td>271</td>
<td>600</td>
</tr>
<tr>
<td>636</td>
<td>6” x 3’ Plank</td>
<td>6</td>
<td>12.9</td>
<td>271</td>
<td>600</td>
</tr>
<tr>
<td>642</td>
<td>6” x 3.5’ Plank</td>
<td>6</td>
<td>14.5</td>
<td>232</td>
<td>546</td>
</tr>
<tr>
<td>648</td>
<td>6” x 4’ Plank</td>
<td>6</td>
<td>16.1</td>
<td>213</td>
<td>520</td>
</tr>
<tr>
<td>660</td>
<td>6” x 5’ Plank</td>
<td>6</td>
<td>19.4</td>
<td>185</td>
<td>480</td>
</tr>
<tr>
<td>672</td>
<td>6” x 6’ Plank</td>
<td>6</td>
<td>22.6</td>
<td>105</td>
<td>388</td>
</tr>
<tr>
<td>684</td>
<td>6” x 7’ Plank</td>
<td>6</td>
<td>25.9</td>
<td>100</td>
<td>322</td>
</tr>
<tr>
<td>696</td>
<td>6” x 8’ Plank</td>
<td>6</td>
<td>27.7</td>
<td>93</td>
<td>284</td>
</tr>
<tr>
<td>6108</td>
<td>6” x 9’ Plank</td>
<td>6</td>
<td>32.4</td>
<td>69</td>
<td>250</td>
</tr>
<tr>
<td>6120</td>
<td>6” x 10’ Plank</td>
<td>6</td>
<td>35.6</td>
<td>58</td>
<td>233</td>
</tr>
</tbody>
</table>

Third-party manufactured component. Data may vary.

BUILD NOTE: Where a possibility of uplift could occur, all boards should be securely attached to the scaffold with #9 wire, tie wraps, toe boards, filler plates or other equivalent means.

All material must be inspected prior to use!
See inspection guidelines on page 112.
Excel modular filler plates are designed to fit all types of scaffolding to cover gaps between wood or metal boards.

Filler plates come in various lengths and contain holes that allow the filler plate to be tied or nailed in place.

Filler plates are designed with wider slots on one end to allow the filler plate to be installed without bending.

MATERIAL SPECS: All filler plates are made from 10-gauge galvanized steel.

BUILD NOTE: When tying filler plates, a single strand of #9 wire at each end is required.
EXCEL MODULAR WOOD PLANKS

Excel purchases only quality wood planks that meet OSHA requirements for lumber type and density. The following is the required inspection/storage procedure for boards:

1. The boards should be inspected before they are put into service for damage and wear. All planks must be inspected routinely for damage and wear, so that they can be replaced as quickly as necessary.

2. Identification of damage: Employees shall be trained to recognize the following types of wear/damage:

 - Decay: Boards should be examined to determine if age/weathering/wear is excessive. Wood ages and reacts to usage and will begin to show checks, splits and notches. These will vary in degree, depending on the loads a plank has carried, the weather to which it has been exposed, the length of time it has been in use, etc. Planks with splits—cracks that go completely through the wood for more than a few inches—should not remain in service, as they may no longer maintain the necessary load-bearing capacity. Planks with checks—cracks that are on the surface only and do not go completely through the wood—should be watched, as the checks may develop into splits over time.

 - Damage: Does the board contain any notches, cuts or other visual damage that would render it unsafe to use? Notched plank can lead to problems since a portion of the plank is now missing, thereby weakening the plank at that particular area. If a scaffold plank has been used as a mudsill, it should not be returned to service on a platform. Moisture from standing water, as well as point-loading from the scaffold legs may have weakened it, making it unable to bear the weight that will be placed on it.

 - Chemical/heat damage: Has the board been exposed to excessive chemicals/heat (soaked with oil, scorch marks)? Scaffold planks that have visible chemical or scorch marks must be removed from service.

 - Surface covering: Is the surface free from items that may cause a slip (oil/tar/etc.)? OSHA [1926.451(b)(9)] says that scaffold planks that have accumulated layers of mortar, grout, paint, plaster, etc., are not permitted to remain in service since it is impossible to determine their condition. Dangerous splits may be hidden underneath those coatings.

 - Shrinkage: Has the board size decreased past its useful size?

 - Deflection: The flex or "give" of a plank can indicate its condition. OSHA calls for deflection criteria of L/60 (the length of span in inches divided by 60) to get the maximum deflection limit at center span in inches. An example would be a seven-foot (84-inch) span between scaffold frame supports: 84/60 = 1.40 inches. Therefore, you'd never want to allow a plank to deflect more than 1 3/8 inches at the middle of that length span, regardless of type of plank being used. Only sample testing should be performed since test loading can damage the board.

Excel only purchases quality wood planks that meet the OSHA requirements for lumber type and density. All planks must be inspected routinely for damage and wear.

All material must be inspected prior to use! See inspection guidelines on page 112.
EXCEL MODULAR WOOD PLANKS (CONT’D)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Maximum Loading Using Full Thickness Undressed Lumber (lbs./sq. ft.)</th>
<th>Weight (lbs.)</th>
<th>Maximum Scaffold Span (ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WP-4</td>
<td>4' Wood Plank</td>
<td>75</td>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>WP-6</td>
<td>6' Wood Plank</td>
<td>75</td>
<td>27</td>
<td>4</td>
</tr>
<tr>
<td>WP-8</td>
<td>8' Wood Plank</td>
<td>50</td>
<td>36</td>
<td>6</td>
</tr>
<tr>
<td>WP-10</td>
<td>10' Wood Plank</td>
<td>25</td>
<td>45</td>
<td>8</td>
</tr>
<tr>
<td>WP-12</td>
<td>12' Wood Plank</td>
<td>25</td>
<td>54</td>
<td>10</td>
</tr>
</tbody>
</table>

Maximum loading when rated for scaffold use include OSHA (4:1) safety factor.

MAINTENANCE NOTES:

1. When not in use, all wood planks should be stored above ground on dunnage to keep moisture from entering the bottom of the boards.

2. Additionally, all boards should have some sort of wood slats or spacers between layers to allow for air circulation through the boards.

3. Most important, a tarp or something as simple as a sheet of plywood should be placed over the top of the boards to prevent moisture from dropping down through the stack. Ideally, indoor storage is best.

BUILD NOTE: Where a possibility of uplift could occur, all boards should be securely attached to the scaffold with #9 wire, tie wraps, toe boards, filler plates or other equivalent means.

All material must be inspected prior to use! See inspection guidelines on page 112.
EXCEL MODULAR LADDER

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Overall Length (inches)</th>
<th>Max. Total Vertical Load on Ladder (lbs.)</th>
<th>Max. Load on One (1) Ladder Rung (lbs.)</th>
<th>Weight Galvanized (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA1</td>
<td>1' Ladder</td>
<td>14.5</td>
<td>2,000</td>
<td>500</td>
<td>4.1</td>
</tr>
<tr>
<td>LA2</td>
<td>2' Ladder</td>
<td>26</td>
<td>2,000</td>
<td>500</td>
<td>8</td>
</tr>
<tr>
<td>LA3</td>
<td>3' Ladder</td>
<td>37.5</td>
<td>2,000</td>
<td>500</td>
<td>14.3</td>
</tr>
<tr>
<td>LA4</td>
<td>4' Ladder</td>
<td>49</td>
<td>1,500</td>
<td>500</td>
<td>18.3</td>
</tr>
<tr>
<td>LA5</td>
<td>5' Ladder</td>
<td>60.5</td>
<td>1,500</td>
<td>500</td>
<td>22.2</td>
</tr>
<tr>
<td>LA7</td>
<td>7' Ladder</td>
<td>83.5</td>
<td>1,000</td>
<td>500</td>
<td>32.1</td>
</tr>
<tr>
<td>LA8</td>
<td>8' Ladder</td>
<td>95</td>
<td>1,000</td>
<td>500</td>
<td>34</td>
</tr>
<tr>
<td>LA9</td>
<td>9' Ladder</td>
<td>106.5</td>
<td>1,000</td>
<td>500</td>
<td>36</td>
</tr>
<tr>
<td>LA10</td>
<td>10' Ladder</td>
<td>118</td>
<td>1,000</td>
<td>500</td>
<td>42</td>
</tr>
</tbody>
</table>

BUILD NOTES:

1. Ladders are not designed to support loads, such as walkways, pipe supports, pipe hangers, lifting rigs, etc.
2. Ladders should only be used for access to scaffolds.
3. The ladder brackets may limit the load carrying ability of the ladder.

All material must be inspected prior to use! See inspection guidelines on page 112.
EXCEL MODULAR LADDER BRACKET

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Overall Width (inches)</th>
<th>Max Total Vertical Load on Bracket (lbs.)</th>
<th>Weight (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB2</td>
<td>T-Bracket</td>
<td>12</td>
<td>600</td>
<td>12.3</td>
</tr>
<tr>
<td>LB3</td>
<td>Clamp-Bracket</td>
<td>12</td>
<td>600</td>
<td>12.3</td>
</tr>
</tbody>
</table>

T-BRACKET
The ladder must be installed in a corner, or at least one (1) T-bracket restraint for each 10 feet of ladder must be installed over a horizontal bar or equivalent means (i.e., wire or clamps) to prevent the ladder from rotating around the vertical.

CLAMP-BRACKET
Clamp brackets may be installed on the horizontal bars or vertical posts.

BUILD NOTE: Use more brackets when necessary to carry greater loads. The ladder may be the load limiting member. Clamp brackets and T-brackets may be used together on the same scaffold.

Clamp bolts should have between 40 and 65 lbs. tension. Overtightening could damage the threads, bolt or item the clamp is attached to.

CAUTION: There is a pinch point when closing the trigger.

Do not pass ladders to another employee with the ladder bracket installed.

All material must be inspected prior to use! See inspection guidelines on page 112.
1 Ladders require one bracket at the bottom three (3) rungs of the base of all ladder sections, and another within the top three (3) rungs of every ladder installed.

2 Connect the ladder bracket to the ladder rung by facing the clamp side toward ground and hooking the top of the bracket over the desired rung.

3 Ensure your connection is hooked properly over the rung, then rotate the bracket out perpendicularly to the ladder and clamp to leg.

4 Insert the next ladder and install bracket at top three (3) rungs, repeating steps 2-3 until ladder section is to appropriate height.

Bracket to be installed within top three (3) rungs.

Bracket to be installed within bottom three (3) rungs.

WARNING: Never pass a ladder with the bracket attached.

All material must be inspected prior to use! See inspection guidelines on page 112.
EXCEL MODULAR SNOW LADDER

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Overall Length (inches)</th>
<th>Max. Total Vertical Load on Ladder (inches)</th>
<th>Max. Load on One (1) Ladder Rung (lbs.)</th>
<th>Weight Galvanized (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLA5</td>
<td>5' Snow Ladder</td>
<td>60.5</td>
<td>1,500</td>
<td>500</td>
<td>19.5</td>
</tr>
<tr>
<td>SLA3</td>
<td>3' Snow Ladder</td>
<td>37.5</td>
<td>2,000</td>
<td>500</td>
<td>10</td>
</tr>
<tr>
<td>SLB1</td>
<td>Snow Ladder Bracket</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>3</td>
</tr>
</tbody>
</table>

Snow ladders provide a greater non-slip tread for use in snow, ice or other slippery conditions.

Rugged, extra-grip rungs help prevent slips.

Snow ladders are not compatible with regular ladder brackets and must use the clamp and pin style snow ladder bracket. The base of snow ladders must be placed on grade or the deck.

BUILD NOTE: Snow ladders are not designed to support loads, such as walkways, pipe supports, pipe hangers, lifting rigs, etc. Ladders should only be used for access to scaffolds.

All material must be inspected prior to use! See inspection guidelines on page 112.
Excel stair systems are designed to provide safe access for scaffolds. Stairs can be designed using side brackets or multi-bay scaffolds. Excel metal boards are used as the stair treads. Stairs are designed to be any width from two (2) to nine (9) feet. All boards are self-locking, no wiring is required.

BUILD NOTE: Stair sizes six (6) to nine (9) feet are rated for light duty, 25 lbs./sq. ft. All smaller sizes two (2) to five (5) feet are rated for medium duty, 50 lbs./sq. ft. Excel diagonal swivel braces should be used with buttons compressed for stair handrails. When using stair stringers, ensure locking lugs are properly pinned. Do not handle stringers using the locking lugs.

WARNING: Improper use of stairs could cause serious injury. Always use handrails and step in the center of the treads. Walk down the stair tower, do not run, do not skip any steps. Non-slip adhesive tape may be applied to the edge of the metal boards for additional safety. Users should maintain 3-point contact with the stair.

Metal boards with bent ears shall not be used as stair treads. Ensure proper fit for all stair treads. All stair treads must be installed before the stair unit is used.
BUILD NOTE: Safety gates shall not be attached to a vertical attached to a locking intermediate horizontal adapter, heavy-duty intermediate horizontal adapter or a vertical on a non-continuous leg of a cantilevered deck.

“All material must be inspected prior to use! See inspection guidelines on page 112.”
Excel Modular Adjustable Safety Gates

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Opening (inches)</th>
<th>Weight (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASGS</td>
<td>Adjustable Safety Gate Small</td>
<td>28–36</td>
<td>23.5</td>
</tr>
<tr>
<td>ASGL</td>
<td>Adjustable Safety Gate Large</td>
<td>34–46</td>
<td>27</td>
</tr>
</tbody>
</table>

Adjustable safety gates may be flipped to allow the gate to swing in either direction.

For greater versatility, adjustable safety gates are equipped with clamps and are designed to fit all types of scaffolding.

Build Note: To properly install the gate, first place the gate on the vertical and lightly secure the clamps. Then, rotate the gate around the vertical toward the outside of the scaffold until the spring has enough tension that the gate remains closed. Finally, tighten the clamps to hold the gate in place. When properly placed, the strike plate should touch 50% or more of the vertical post. During periodic scaffold inspections the gate may require that the clamps be loosened and the gate rotated to re-tighten the spring.

Maintenance Notes:

1. Gates should be periodically maintained. If they have grease certs, they should be filled with a white lithium grease (ST-80 High-Performance Grease or its equivalent). Gates without grease certs should be lubed with a 10-weight oil or dry graphite.
2. WD-40 can be used before application of grease or oil to loosen old grease and remove any rust buildup. The gate must be cycled (swung in both directions) as many times as necessary to allow the oil/grease to work in and allow the gate to swing freely.

Clamp bolts should have between 40 and 65 lbs. tension. Overtightening could damage the threads, bolt or item the clamp is attached to.

All material must be inspected prior to use! See inspection guidelines on page 112.
Safety gate handrails are designed to provide the safest possible entry and exit from a scaffold platform. When used in combination with the Excel safety gate, they eliminate the need for workers to climb over or through the handrails to access the work platform.

Safety gate handrails are placed on top of the ladder. They lock over the top of the ladder providing safe handrail support all the way onto the scaffold platform.

Safety gate handrails can be installed on any 36-inch scaffold opening.

BUILD NOTE: Never attach a gate to the handrail.

CAUTION: The top of the ladder rail must stop at the same level as the board deck to prevent trip hazards.

Clamp bolts should have between 40 and 65 lbs. tension. Overtightening could damage the threads, bolt or item the clamp is attached to.
EXCEL MODULAR TOE BOARD ASSEMBLY

The Excel scaffold toe board assembly fits all types of scaffold material. The toe boards are adjustable and are available in four (4) different sizes, which will accommodate any scaffold configuration possible. Each toe board telescopes five- (5) inches and locks the scaffold boards down, eliminating the need to wire boards to the horizontals.

Each toe board connector can accept one (1) to three (3) toe boards from any of three (3) directions, straight or at an angle.

MATERIAL SPECS: All boards are made from 18-gauge galvanized steel.

CAUTION: Care must be taken when passing the adjustable portion of the toe board, as the two pieces may come loose.

WARNING: Failure to ensure parts are in proper working condition could result in them coming apart causing serious injury.

Clamp bolts should have between 40 and 65 lbs. tension. Overtightening could damage the threads, bolt or item the clamp is attached to.

All material must be inspected prior to use! See inspection guidelines on page 112.
EXCEL MODULAR ALUMINUM TOE BOARD

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Width (in.)</th>
<th>Weight (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATB-24</td>
<td>2’ Aluminum Toe Board</td>
<td>24</td>
<td>6</td>
</tr>
<tr>
<td>ATB-32</td>
<td>32” Aluminum Toe Board</td>
<td>32</td>
<td>7.5</td>
</tr>
<tr>
<td>ATB-36</td>
<td>3’ Aluminum Toe Board</td>
<td>36</td>
<td>8</td>
</tr>
<tr>
<td>ATB-42</td>
<td>42” Aluminum Toe Board</td>
<td>42</td>
<td>9</td>
</tr>
<tr>
<td>ATB-48</td>
<td>4’ Aluminum Toe Board</td>
<td>48</td>
<td>10</td>
</tr>
<tr>
<td>ATB-60</td>
<td>5’ Aluminum Toe Board</td>
<td>60</td>
<td>12</td>
</tr>
<tr>
<td>ATB-72</td>
<td>6’ Aluminum Toe Board</td>
<td>72</td>
<td>13.5</td>
</tr>
<tr>
<td>ATB-84</td>
<td>7’ Aluminum Toe Board</td>
<td>84</td>
<td>15.5</td>
</tr>
<tr>
<td>ATB-96</td>
<td>8’ Aluminum Toe Board</td>
<td>96</td>
<td>17.5</td>
</tr>
<tr>
<td>ATB-108</td>
<td>9’ Aluminum Toe Board</td>
<td>108</td>
<td>19.5</td>
</tr>
<tr>
<td>ATB-120</td>
<td>10’ Aluminum Toe Board</td>
<td>120</td>
<td>21</td>
</tr>
</tbody>
</table>

The aluminum toe board, with locking clips, is designed to fit all types of scaffold material. The toe board locks the scaffold boards down—eliminating the need to wire boards to the horizontals. Installation times are greatly reduced with this equipment.

BUILD NOTE: Ensure the push button is exposed when engaging the toe board.

CAUTION: Holes in the toe board are for nailing to wood planks. Use caution when nailing to not damage toe board.

All material must be inspected prior to use! See inspection guidelines on page 112.
EXCEL MODULAR SCAFFOLD USED WITH TUBE AND CLAMP

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Weight (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCA</td>
<td>Tube and Clamp Adapter</td>
<td>3.5</td>
</tr>
<tr>
<td>TU-20</td>
<td>20' Tube*</td>
<td>30</td>
</tr>
<tr>
<td>TU-16</td>
<td>16' Tube*</td>
<td>27</td>
</tr>
<tr>
<td>TU-13</td>
<td>13' Tube*</td>
<td>22</td>
</tr>
<tr>
<td>TU-10</td>
<td>10' Tube*</td>
<td>21</td>
</tr>
<tr>
<td>TU-8</td>
<td>8' Tube*</td>
<td>18</td>
</tr>
<tr>
<td>TU-6</td>
<td>6' Tube*</td>
<td>14</td>
</tr>
<tr>
<td>TU-4</td>
<td>4' Tube*</td>
<td>11</td>
</tr>
<tr>
<td>SWC</td>
<td>Swivel Clamp*</td>
<td>3</td>
</tr>
<tr>
<td>RAC</td>
<td>Right-Angle Clamp*</td>
<td>4</td>
</tr>
<tr>
<td>SBC</td>
<td>Swivel Beam Clamp*</td>
<td>4</td>
</tr>
<tr>
<td>RBC</td>
<td>Rigid Beam Clamp*</td>
<td>4</td>
</tr>
<tr>
<td>MBP-1</td>
<td>Male Base Plate</td>
<td>5</td>
</tr>
</tbody>
</table>

*Third-party manufactured component. Data may vary.

BUILD NOTES:

1. Tube and clamp material is manufactured by many different vendors and therefore it is difficult to identify the manufacturer or the quality of material used. Always assume the material is of lesser quality and use the most conservative designs when building with this material.

2. When tube and clamp scaffolding is used to continue a vertical above Excel scaffold, load ratings and restrictions of the tube and clamp manufacturer must be used.

3. Tube lengths of 16 feet and 20 feet, without proper support, may not meet minimum requirements for scaffold loads.

4. When the top of the beam cannot be reached because of an obstruction, tube and clamp cut to length, or tubing designed to fit between two (2) beams can be used for support.

5. Tube and clamp material must be assembled in strict accordance with all current Federal and State guidelines. (See OSHA 1926.452(b) “Tube and coupler scaffolds.”)

MATERIAL NOTE:

Most tube material is manufactured with 13-gauge, 1.90 diameter tubing.

All material must be inspected prior to use! See inspection guidelines on page 112.
All material must be inspected prior to use! See inspection guidelines on page 112.

Swivel beam clamps and rigid beam clamps should be used only for scaffold bracing or as shown above. To support a scaffold structure use tube and clamp or heavy-duty support beam clamps designed for such use.

Rigid beam clamps and swivel beam clamps must be inspected for damage/cracking at the weld and the top bend of the clamp. Beam clamps have been know to fracture at the top bend area.

BUILD NOTE: The strength of the scaffold is greatly affected by the torque on the bolted connections.

Clamp bolts should have between 40 and 65 lbs. tension. Overtightening could damage the threads, bolt or item the clamp is attached to.
EXCEL MODULAR SCAFFOLD USED WITH TUBE AND CLAMP
WHEN TYING TO AN EXISTING STRUCTURE

YOKE TIE FOR BEAM
1. Secure the beam from all sides using tube and clamp as shown.
2. Use backup clamps to prevent slippage of the tubing.

TYING SCAFFOLD TO COLUMN OR BEAM
1. Clamps are to always be used in pairs.
2. When possible, use the beam clamps on the top flange of the beam.
3. Beam clamps are attached to top of the I-beam where the load is not on the clamp bolt.

For other configurations contact the Excel Engineering Department.
(443) 293-6352 | engineering@global-excel.com

CAUTION: When installing swivel and rigid beam clamps for hanging scaffold, please consult pages 74-80 of this manual for typical configurations and capacities, as well as proper installation of beam clamps.

All material must be inspected prior to use! See inspection guidelines on page 112.

Yoke Tie for Beam

Tying Scaffold to Column or Beam
HANGING/SUSPENDED SCAFFOLD
PROPER HANGING TECHNIQUES

Bottom Flange of Beam Using Tube and Clamp

Bottom Flange of Beam Using Tube and Clamp with a 45 Degree to Vertical

Bottom Flange of Beam Using Excel Vertical

Bottom Flange of Beam Using Excel Vertical with a 45 Degree to Vertical

Top Flange of Beam Using Tube and Clamp

Top Flange of Beam Using Excel Vertical

All material must be inspected prior to use!
See inspection guidelines on page 112.
BUILD NOTES:

1. Place backup clamp to top of tube with a minimum of three (3) inches showing above the clamp.
2. Install clamp below backup clamp, this will be used to hang the vertical assembly in Step 5.
3. Attach Excel vertical (20-cup max.) to tube with a minimum of two (2) swivel clamps.
4. Connect tube and two (2) beam clamps to the bottom flange of the approved beam.
5. Connect the tube, clamp and vertical assembly to the tube clamped to the bottom of beam. *(When adjusting the elevation to match the preceding bay do not loosen the backup clamp.)*
6. Tube and clamp assembly should be placed against beam clamp or three (3) inches from beam edge.

MATERIAL NOTE: All tube used to be 1.9" OD, 1.6" ID standard tube and coupler material.

Clamp bolts should have between 40 and 65 lbs. tension. Overtightening could damage the threads, bolt or item the clamp is attached to.

All material must be inspected prior to use! See inspection guidelines on page 112.
HANGING/SUSPENDED SCAFFOLD (CONT’D)

USING PIPE FOR LEG DROP WITH TUBE AND CLAMP AT A 45-DEGREE MINIMUM TO LOADED VERTICAL

BUILD NOTES:
1. Place backup clamp to top of tube with a minimum of three (3) inches showing above the clamp.
2. Install clamp below backup clamp, this will be used to hang the vertical assembly in Step 5.
3. Attach Excel vertical (20-cup max.) to tube with a minimum of two (2) swivel clamps.
4. Connect tube and two (2) beam clamps to the bottom flange of the approved beam.
5. Connect the tube, clamp and vertical assembly to the tube clamped to the bottom of beam. Also install 45-degree support tube and clamp bracing. (When adjusting the elevation to match the preceding bay do not loosen the backup clamp.)
6. Tube and clamp assembly should be placed against beam clamp or three (3) inches from beam edge.

MATERIAL NOTE: All tube used to be 1.9" OD, 1.6" ID standard tube and coupler material.

Clamp bolts should have between 40 and 65 lbs. tension. Overtightening could damage the threads, bolt or item the clamp is attached to.
HANGING/SUSPENDED SCAFFOLD (CONT’D)
FROM BOTTOM FLANGE USING AN EXCEL VERTICAL

BUILD NOTES:
1. Install right angle clamp at second cup of Excel vertical (20-cup max).
2. Connect tube and two (2) beam clamps to the bottom flange of the approved beam.
3. Connect the vertical to the pipe clamped to the bottom of beam.

MATERIAL NOTE: All tube used to be 1.9" OD, 1.6" ID standard tube and coupler material.

Clamp bolts should have between 40 and 65 lbs. tension. Overtightening could damage the threads, bolt or item the clamp is attached to.

All material must be inspected prior to use! See inspection guidelines on page 112.
HANGING/SUSPENDED SCAFFOLD (CONT’D)

USING EXCEL VERTICAL FOR LEG DROP WITH TUBE AND CLAMP AT A 45-DEGREE MINIMUM TO LOADED VERTICAL

BUILD NOTES:

1. Install right angle clamp at second cup of Excel vertical (20-cup max).
2. Connect tube and two (2) beam clamps to the bottom flange of the approved beam.
3. Connect the vertical to the pipe clamped to the bottom of beam. Also install 45-degree support tube and clamp bracing.

MATERIAL NOTE: All tube used to be 1.9" OD, 1.6" ID standard tube and coupler material.

Clamp bolts should have between 40 and 65 lbs. tension. Overtightening could damage the threads, bolt or item the clamp is attached to.

All material must be inspected prior to use! See inspection guidelines on page 112.
HANGING/SUSPENDED SCAFFOLD (CONT’D)
SUSPENDED SCAFFOLD FROM TOP FLANGE OF APPROVED BEAM USING TUBE AND CLAMP INSTALLATION PROCEDURE

BUILD NOTES:
1. Place backup clamp to top of tube with a minimum of three (3) inches showing above the clamp.
2. Install clamp below backup clamp, this will be used to hang the vertical assembly in Step 5.
3. Attach Excel vertical (20-cup max.) to tube with a minimum of two (2) swivel clamps.
4. Connect tube and two (2) beam clamps to the bottom flange of the approved beam.
5. Connect the tube, clamp and vertical assembly to the tube clamped to the top of beam. (When adjusting the elevation to match the preceding bay do not loosen the backup clamp.)
6. Tube and clamp assembly should be placed against beam clamp or three (3) inches from beam edge.

MATERIAL NOTE: All tube used to be 1.9" OD, 1.6" ID standard tube and coupler material.

Clamp bolts should have between 40 and 65 lbs. tension. Overtightening could damage the threads, bolt or item the clamp is attached to.

All material must be inspected prior to use! See inspection guidelines on page 112.
HANGING/SUSPENDED SCAFFOLD (CONT’D)

SUSPENDED SCAFFOLD FROM TOP FLANGE OF APPROVED BEAM USING BEAM CLAMPS AND TUBE WITH EXCEL VERTICAL (VP20)

PREFERRED INSTALLATION PROCEDURE

BUILD NOTES:
1. Install right angle clamp at second cup of Excel vertical (20-cup max.).
2. Connect pipe and two (2) beam clamps to the top flange of the approved beam.
3. Connect the vertical to the pipe clamped to the bottom of beam.

MATERIAL NOTE: All tube used to be 1.9" OD, 1.6" ID standard tube and coupler material.

Clamp bolts should have between 40 and 65 lbs. tension. Overtightening could damage the threads, bolt or item the clamp is attached to.

All material must be inspected prior to use! See inspection guidelines on page 112.
EXCEL MODULAR CLEAN VERTICAL

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Effective Length (inches)</th>
<th>Overall Length (inches)</th>
<th>Tube Length (inches)</th>
<th>Weight Galvanized (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV4</td>
<td>Clean Vertical 2'</td>
<td>23</td>
<td>26.25</td>
<td>23</td>
<td>5</td>
</tr>
<tr>
<td>CV8</td>
<td>Clean Vertical 4'</td>
<td>46</td>
<td>49.25</td>
<td>46</td>
<td>13.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unbraced Post Length (inches)</th>
<th>Maximum Allowable Compressive Load When Rated for Scaffold Use (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>69 (5.75 ft.)</td>
<td>6,986</td>
</tr>
<tr>
<td>46 (3.83 ft.)</td>
<td>8,230</td>
</tr>
<tr>
<td>23 (1.91 ft.)</td>
<td>8,690</td>
</tr>
</tbody>
</table>

Clean verticals are designed to allow a vertical to pass through a congested area where cups create interference, such as a pipe rack or cable tray.

Clean verticals shall never be stacked such that there is more than 69 inches of unsupported vertical.

MATERIAL SPECS:

1. Clean verticals are designed to be compatible with standard 1.90 OD tube and clamp material.
2. All tubing is 1.90 diameter, 11-gauge (0.120 wall), high-strength, minimum 65,000 yield, and 75,000 tensile.

CAUTION: There is a pinch point located where two verticals are pinned together.

All material must be inspected prior to use! See inspection guidelines on page 112.
EXCEL MODULAR TRUSS
USED AS A LIFTING RIG

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Maximum Allowable Load (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Design A and B</td>
</tr>
<tr>
<td>TR4</td>
<td>4’ Truss</td>
<td>3,000</td>
</tr>
<tr>
<td>TR5</td>
<td>5’ Truss</td>
<td>3,000</td>
</tr>
<tr>
<td>TR6</td>
<td>6’ Truss</td>
<td>2,750</td>
</tr>
<tr>
<td>TR7</td>
<td>7’ Truss</td>
<td>3,000</td>
</tr>
<tr>
<td>TR8</td>
<td>8’ Truss</td>
<td>3,500</td>
</tr>
<tr>
<td>TR9</td>
<td>9’ Truss</td>
<td>3,500</td>
</tr>
<tr>
<td>TR10</td>
<td>10’ Truss</td>
<td>3,500</td>
</tr>
<tr>
<td>TR12</td>
<td>12’ Truss</td>
<td>3,500</td>
</tr>
<tr>
<td>TR14</td>
<td>14’ Truss</td>
<td>3,000</td>
</tr>
<tr>
<td>TR16</td>
<td>16’ Truss</td>
<td>2,000</td>
</tr>
<tr>
<td>TR18</td>
<td>18’ Truss</td>
<td>2,000</td>
</tr>
</tbody>
</table>

For design A and B, the nylon strap must be placed to prevent sideways twisting of the truss.

Shown left is an acceptable method of securing a beam to the top of the truss when using design C. Other methods are possible as long as the beam is secured from sliding off the truss.

1. The I-beam must be a minimum of four (4) inches at the base.
2. The listed loads are for the load attached to the center of the I-beam.
3. The I-beam may be the limiting load carrying member.

BUILD NOTES:
1. All loads are calculated using Excel verticals to support the trusses. When using different configurations, the item the truss is attached to may be the load-limiting component.
2. Trusses should not be used as lifting rigs when connected to side brackets, verticals supported by side brackets, intermediate horizontal adapters or verticals supported by intermediate horizontal adapters.

All material must be inspected prior to use! See inspection guidelines on page 112.
GUIDELINES FOR LIFTING RIGS

It is required to have a minimum of a four- (4) inch wide strap to prevent a small load area from bending the tube material on the truss. When a four- (4) inch strap is not available, the following can be used provided the new loading requirements are met:

1. The four- (4) inch wide value is defined for the maximum load applied to a truss.

2. Two 2-inch straps placed side by side can be used instead of a single four- (4) inch strap.
 - 2,000 lbs. for 16- and 18-foot truss
 - 2,750 lbs. for six- (6) foot truss
 - 3,000 lbs. for five- (5), seven- (7) and 14-foot truss
 - 3,500 lbs. for eight- (8) through 12-foot truss

3. A single two- (2) inch strap can be used if the load is reduced to:
 - 800 lbs. for 16- and 18-foot truss
 - 1,100 lbs. for six- (6) foot truss
 - 1,200 lbs. for five- (5), seven- (7) and 14-foot truss
 - 1,400 lbs. for eight- (8) through 12-foot truss

4. A three- (3) inch strap or two (2) 1.5-inch straps side by side can be used if the load is reduced to:
 - 1,000 lbs. for 16- and 18-foot truss
 - 1,375 lbs. for six- (6) foot truss
 - 1,500 lbs. for five- (5), seven- (7) and 14-foot truss
 - 1,750 lbs. for eight- (8) through 12-foot truss

BUILD NOTES:
1. All OSHA and plant safety regulations governing rigging and material handling must be followed.
2. All loose material must be removed or secured before lifting.
3. Spreader beams must be used, so that the lifting load on all vertical posts is applied in an upward direction.
4. The scaffold must be properly braced to prevent deformation during movement.
5. Scaffold weight loads must be calculated to prevent the overloading of any scaffold or lifting component.
6. All scaffold components (deck boards, etc.) must be secured to the scaffold.

CAUTION: Wire cable cannot be used for strapping. A strap must be a minimum of four (4) inches wide.

Clamp bolts should have between 40 and 65 lbs. tension. Overtightening could damage the threads, bolt or item the clamp is attached to.

All material must be inspected prior to use! See inspection guidelines on page 112.
The following general guidelines are provided for lifting and rigging Excel Modular Scaffold material. These are general guidelines. Users should follow all Federal, State and local rigging guidelines. (See: OSHA – 1926.251, Rigging equipment for material handling, OSHA – 1926.753, Hoisting and rigging, OSHA – 1926 Subpart N, Cranes, Derricks, Hoists, Elevators, and Conveyors, other OSHA and ASME standards as applicable.)

Excel scaffold racks may be used to hold material while lifting, provided the following guidelines are followed:

1. All material must be evenly balanced in the rack.
2. All material must be secured from sliding. (Two (2) ratchet straps, two (2) wraps of banding, or other approved method of securing the material shall be used.)
3. All material must be secured to the rack. (This can be accomplished by the same strapping/banding required above.)
4. Standard rigging procedures should be used to prevent movement of the straps while lifting the load. (Use of a spreader bar when possible is preferred.)
EXCEL MODULAR ROPE HOIST

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Weight (lbs.)</th>
<th>Maximum Allowable Load (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPH1</td>
<td>Rope Hoist</td>
<td>35</td>
<td>250</td>
</tr>
<tr>
<td>Pulley</td>
<td>Hoist Pulley</td>
<td>8</td>
<td>250</td>
</tr>
</tbody>
</table>

Excel Modular rope hoists are designed to provide an easy way to get tools up a ladder to the board deck.

The pulley system swivels, so that the load can be swiveled through an open Excel safety gate or above the top handrail.

BUILD NOTES:
1. At least one (1) horizontal member must be attached to the vertical to provide lateral support for the rope hoist.
2. The scaffold must have a complete horizontal scaffold wrap at or above the rope hoist connection.
3. The rope pulley hoist cannot be used with chain falls, or electric or air winches. The pulley supplied by Excel requires 7/8 inch rope. Other types of wheel pulleys can be used as long as the pulley is designed to support the required loads. The diameter of the rope to be used with other pulleys will depend on the pulley's size.
4. The attached vertical should be able to support the required loads. This pulley assembly shall not be installed on any vertical attached to an intermediate horizontal adapter, side bracket or vertical that is not properly braced.

MAINTENANCE:
1. The rope pulley hoist should be periodically maintained. They should be filled with a white lithium grease (ST-80 High-Performance Grease or its equivalent).
2. WD-40 can be used before application of grease or oil to loosen old grease and remove any rust buildup.

Clamp bolts should have between 40 and 65 lbs. tension. Overtightening could damage the threads, bolt or item the clamp is attached to.

CAUTION: When handling, passing and installing the rope hoist, be aware it will rotate and could spin over/flip during handling, causing serious injury to the installer. Be sure the pulley is removed or securely attached before handling or passing the rope hoist to another person.

All material must be inspected prior to use! See inspection guidelines on page 112.
EXCEL MODULAR SCAFFOLD CART

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Load Capacity (lbs.)</th>
<th>Weight (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-Cart</td>
<td>Scaffold Cart</td>
<td>3,340</td>
<td>300</td>
</tr>
</tbody>
</table>

BUILD NOTES:

1. Cart is only to be lifted by a forklift at pockets provided and all material strapped into place prior to lifting.
2. Cart is not meant to be towed by a motorized vehicle and is to be lifted by forklift or pushed by man power.
3. Cart wheels are to be locked while loading and unloading to prevent movement.
4. The stabilizer at the back of the cart is to be used whenever the cart is stationary.

All material must be inspected prior to use! See inspection guidelines on page 112.
USING EXCEL MODULAR SCAFFOLDING AS A FALL PROTECTION ANCHORAGE POINT

In order to provide the safest work environment for all personnel, Excel recommends that the scaffold not be used as a fall protection anchorage point when other locations or methods of fall protection anchorage are available.

Scaffold may be used providing the following prerequisite guidelines are followed:

1. Shock absorbent lanyards, or self-retractable lanyards attached to Excel Modular Scaffold must use the manufacturer’s recommended method of attachment. Only lanyards that have a 3,500 lbs. side gate load notification shall be used on the vertical members.

2. The anchorage point may be made on a vertical up to six (6) feet above the last horizontal connection, with a minimum of two (2) horizontals spaced 80.5 inches with lateral horizontals (see Note 6), as shown in the sketch here.

3. The anchorage point may be made to a horizontal bar provided that both end connectors are securely locked in place and the horizontal member is a(n)
 a) Excel Modular Scaffold truss top chord.
 b) Two- (2) through eight- (8) foot horizontals of any type may be used without modification for an anchorage point, as long as they are properly installed and in proper working condition.
 c) Nine- (9) and 10- foot horizontals with any end connector may be used if modified to include a horizontal tie-off support (see page 92) or a tube and clamp support that ties a minimum of two (2) horizontals together at the center (as shown in Option #1).

All material must be inspected prior to use! See inspection guidelines on page 112.
USING EXCEL MODULAR SCAFFOLDING AS A FALL PROTECTION ANCHORAGE POINT (CONT’D)

4. Only one individual can tie off at any anchorage point anywhere on a single vertical or horizontal. No one may tie off to any of the other members that are directly shared to an occupied anchor point.

5. The anchorage point must be as high as possible above the employee's work area.

6. When a horizontal is used as a tie-off point, each vertical the horizontal is attached to must be secured by a minimum of one other horizontal or equivalent.

All material must be inspected prior to use! See inspection guidelines on page 112.
7. The anchorage point should, whenever possible, be made to a vertical that extends to the ground. Exceptions are permitted on cantilevered sections or verticals that do not extend to the ground when the following criteria are met:

 a) Only two- (2) through three- (3) foot fixed-size side brackets may have their handrails used as a tie-off location. NO folding side brackets or custom-made side bracket (tube and clamp) may be used.

 b) The tie-off location must never be made directly to the side bracket itself, but must be attached to the handrail attached to the vertical post with eight (8) cups and have a maximum length of eight (8) feet long.

 c) Attachment to handrails attached to an eight (8) cup vertical and locking intermediate horizontal adapter, such as in the instance of a swing gate assembly, may be used as long as the maximum length of the handrail does not exceed seven (7) feet long.

 d) As soon as another tie-off location becomes available, such as a horizontal that is above the worker and/or a vertical that extends to the ground, the worker should use that as their tie-off location.

8. All scaffolds that are built on any structure other than the ground shall be properly secured to the structure and be evaluated by a competent person prior to being used for a tie-off point.

9. All scaffold anchorage points shall be evaluated by a competent person prior to being used.

10. When the scaffold contains casters:

 a) The casters shall be locked.

 b) Outriggers or a properly designed tube and clamp outrigger that extends a minimum of 20 inches from the base of the scaffold, must be installed to prevent rolling and tipping of the scaffold.

All material must be inspected prior to use! See inspection guidelines on page 112.
11. When possible, scaffolds that are used for a tie-off anchorage point shall be secured to a permanent structure, tied, guy-wired, or provided with outriggers. If a scaffold is to be free standing, the scaffold must meet the following conditions:

a.) The scaffold is to have a minimum base of five- (5) feet long x five- (5) feet wide (excluding outriggers if used) and have a 3:1 height to base ratio.

b.) The scaffold is to have vertical diagonal bracing installed on all four (4) sides of a single bay scaffold from the base to the underside of the deck.

c.) When attaching to the vertical post of a free-standing scaffold, the point of connection shall have two (2) horizontal members attached at 90 degrees to each other, as close to the tie-off point as possible.

d.) When attaching to a horizontal member, the conditions listed on Note 3 shall be adhered to at all times.

e.) Should a smaller base, free-standing scaffold be erected, the scaffold must be designed by an engineer prior to being erected.

f.) When available, the scaffold should be tied to an approved structure by either tube and clamp as close to the top deck as possible. This tie is to be made to the vertical members only and not attached to any horizontal members.

g.) This is in addition to tying required by Federal, State or local regulations.

h.) Anytime a free-standing scaffold is to be used for a tie-off anchorage point, it must be noted on the scaffold tag.

Excel Modular Scaffold encourages users of its scaffold material, either through independent testing, or with the aid of a professional engineer to develop their own tie-off guidelines, which may be different than those listed above, as long as they are stricter and meet all OSHA requirements.

Excel Modular Scaffold may give different guidelines depending on the specific needs of the customer and the type of scaffold maintenance program and safe regulated work areas.

In order to provide the safest work environment for all personnel, Excel recommends that the scaffold not be used as a fall protection anchorage point when other locations or methods of fall protection anchorage are available.
USING EXCEL MODULAR SCAFFOLDING AS A FALL PROTECTION ANCHORAGE POINT (CONT’D)

OSHA NOTE: “Rescue considerations.” As required by 1926.502(d)(20), when personal fall arrest systems are used, the employer must ensure employees can be promptly rescued or can rescue themselves should a fall occur. The availability of rescue personnel, ladders or other rescue equipment should be evaluated. In some situations, equipment which allows employees to rescue themselves after the fall has been arrested may be desirable, such as devices which have descent control built in.

OSHA NOTE: “Inspection considerations.” As required by 1926.502(d)(21), personal fall arrest systems must be regularly inspected. Any component with any significant defect, such as cuts, tears, abrasions, mold, or undue stretching, alterations or additions which might affect its efficiency, damage due to deterioration, contact with fire, acid, or other corrosives, distorted hooks or faulty hook springs, tongues unfitted to the shoulder of buckles, loose or damaged mountings, non-functioning parts, or wearing of internal deterioration in the ropes must be withdrawn from service immediately, and shall be tagged or marked unusable, and destroyed.

ENGINEERING NOTE: Any material that is subjected to a load from a fall shall be replaced, even if there is no visible damage to the scaffold material. This includes verticals which may have been bent from the stresses from the fall. If it is not possible to immediately replace the material because of structural considerations the material must be braced with tube and clamp or equivalent means and inspected by an engineer to ensure it is safe for continued use. In most cases, the certification of a PE may be required and is strongly recommended. The material must be replaced as soon as possible and the affected equipment tagged and removed from service.

All material must be inspected prior to use! See inspection guidelines on page 112.
The horizontal tie-off support is designed so the horizontal bars it is connected to share the load. The single clamp design allows for the greatest amount of support with the fastest possible installation time.

BUILD NOTES:

1. The horizontal tie-off support must always be installed in the middle of the horizontals to provide the maximum amount of support at the weakest location.
2. A tie-off may never be placed on the middle or bottom horizontal.

Clamp bolts should have between 40 and 65 lbs. tension. Overtightening could damage the threads, bolt or item the clamp is attached to.

WARNING: Before tying off to the handrail, make sure the horizontal tie-off support is properly installed and the clamp tight.

The horizontal tie-off support should be installed as close as possible to the center of the horizontal.

Any horizontal tie-off support that has been used to prevent a fall must be removed from service, even if there is no visible damage.

The horizontal tie-off support must only be used when following the complete fall protection anchorage point guidelines on page 87 of this technical manual.

Care must be taken to ensure the horizontal bars the horizontal tie-off support is attached to are properly latched into place.

Tie-off anchorages must never be attached to the horizontal tie-off support—only to the top horizontal it supports.

All material must be inspected prior to use! See inspection guidelines on page 112.
The proper way to attach a horizontal tie-off support to the horizontals is in the center of the horizontal with the clamp attached to the handrail. The clamp should slide over the handrail and the bolt should be at the bottom of the horizontal.

The top clamp may appear to be installed upside down, and this may seem improper for experienced builders since a fall will put pressure on the handrail and push down on the bolt.

The horizontal tie-off support was designed, so that if the bolt came loose the flap would prevent the horizontal tie-off support from falling off the scaffold.

All material must be inspected prior to use! See inspection guidelines on page 112.
EXCEL MODULAR SQUARE STEEL RACK

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Weight (lbs.)</th>
<th>Dimensions (inches) Length x Width x Height</th>
<th>Max. Capacity (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSR</td>
<td>Square Steel Rack</td>
<td>134</td>
<td>44.25 x 44.25 x 32.25</td>
<td>5,000</td>
</tr>
</tbody>
</table>

Third-party manufactured component. Data may vary.

Square steel racks are designed to hold Excel Modular Scaffold verticals, diagonals and other irregularly-shaped components.

Square steel racks will hold 125 20-cup verticals or an equivalent number of smaller verticals pinned together.

When shipping, the square racks require two (2) pieces of banding to be placed around the base of the rack and the items being carried.

Square steel racks are designed so special casters can be placed on the bottom to allow the racks to be easily moved without a forklift. Always inspect rack feet for damage before installing casters or loading the rack.

STORAGE:
1. Square steel racks may be stacked for storage. The strength of the storage surface will determine how many racks can be stacked.
2. On grass, dirt or other unpacked surfaces, racks should be placed singly.
3. On prepared surfaces and asphalt, racks can be placed two (2) or three (3) high.
4. On three (3) or more inches of concrete, racks may be stacked three (3) or four (4) units high.

WARNING: Racks should not be stacked more than four (4) units high.

CAUTION: Always inspect the surface of the area where racks are stored for any cracking or sinking and inspect the racks for tilting or leaning.

BUILD NOTE: Do not overload the casters when stacking a rack on top of a rack that contains casters.
EXCEL MODULAR STEEL BOARD RACK

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Weight (lbs.)</th>
<th>Dimensions (inches)</th>
<th>Max. Capacity (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBR</td>
<td>Steel Board Rack</td>
<td>160</td>
<td>59.75 x 47 x 36</td>
<td>5,000</td>
</tr>
</tbody>
</table>

Third-party manufactured component. Data may vary.

Steel board racks are designed to hold Excel Modular Scaffold metal boards and other irregularly-shaped components.

Steel board racks will hold 62 metal boards four (4) feet or longer and 124 metal boards 32 inches or shorter.

When shipping, the metal board racks require two (2) pieces of banding to be placed around the base of the rack and the items being carried.

Steel board racks are designed so special casters can be placed on the bottom to allow the racks to be easily moved without a forklift. Always inspect rack feet for damage before installing casters or loading the rack.

STORAGE:
1. Steel board racks may be stacked for storage. The strength of the storage surface will determine how many racks can be stacked.
2. On grass, dirt or other unpacked surfaces, racks should be placed singly.
3. On prepared surfaces and asphalt, racks can be placed two (2) or three (3) high.
4. On three (3) or more inches of concrete, racks may be stacked three (3) or four (4) units high.

WARNING: Racks should not be stacked more than four (4) units high.

CAUTION: Always inspect the surface of the area where racks are stored for any cracking or sinking and inspect the racks for tilting or leaning.

BUILD NOTE: Do not overload the casters when stacking a rack on top of a rack that contains casters.

All material must be inspected prior to use!
See inspection guidelines on page 112.
Horizontal racks are designed for easy storage and inventory of Excel Modular Scaffold horizontals. Each rack holds 96 horizontals and uses four (4) horizontals for support, for a total of 100 horizontals. To perform a quick inventory, simply count the full racks.

When shipping, the horizontal racks require one (1) piece of banding to be placed around the 96 center horizontals.

Horizontal racks are designed so Excel casters can be placed on the bottom to allow the racks to be easily moved without a forklift.

STORAGE:
1. Horizontal racks may be stacked for storage. The strength of the storage surface will determine how many racks can be stacked.
2. On grass, dirt or other unpacked surfaces, racks should be placed singly.
3. On prepared surfaces and asphalt, racks can be placed two (2) or three (3) high.
4. On three (3) or more inches of concrete, racks may be stacked three (3) or four (4) units high.

WARNING: Racks should not be stacked more than four (4) units high. Horizontal racks MUST NOT be stacked when equipped with casters.

CAUTION: Always inspect the surface of the area where racks are stored for any cracking or sinking and inspect the racks for tilting or leaning.

All material must be inspected prior to use! See inspection guidelines on page 112.
Caution should be used when assembling or disassembling horizontal racks. The racks are heavy and have rough edges that can cause injury.

Care must be taken to make sure a loose rack will not fall. It should be safely supported on the ground or held by another worker during assembly and disassembly.

Always ensure the bottom horizontal is securely latched before beginning disassembly. The opposite horizontal rack can fall when the bottom horizontal is released if the horizontal is not securely latched on the other rack. Therefore, always disassemble racks from the outside.

A rack support foot may be added to the bottom of each horizontal rack to help prevent the rack from falling over when assembling and disassembling the racks. The rack foot will make it much harder for the rack to fall in either direction. However, the rack can still fall over if the ground is not level. The rack must be checked for stability before letting it stand on its own. Care must be taken to only assemble or disassemble racks on level ground.

CAUTION: Whenever assembling or disassembling racks without a rack support foot, do not leave a single rack standing without support.

All material must be inspected prior to use! See inspection guidelines on page 112.
EXCEL MODULAR SCAFFOLD
FOLDING WIRE BASKET

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Weight (lbs.)</th>
<th>Dimensions (inches)</th>
<th>Max. Capacity (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FWB</td>
<td>Folding Wire Basket</td>
<td>240</td>
<td>48 x 40 x 42</td>
<td>2,000</td>
</tr>
</tbody>
</table>

Third-party manufactured component. Data may vary.

Folding wire baskets are designed to hold Excel casters, ladder brackets, clamps and other small components only.

Items should never be stacked above the rim in wire baskets.

When shipping, wire baskets may require a plywood lid to prevent items from bouncing out.

STORAGE: Wire baskets may be stacked for storage.

WARNING: Wire baskets should never be stacked more than two (2) units high.

All material must be inspected prior to use! See inspection guidelines on page 112.
OSHA COMPLIANCE OF EXCEL MODULAR SCAFFOLD

When Excel Modular Scaffold material is assembled according to the loading and assembly requirements in the Excel Modular Scaffold Standard Component Technical Manual the completed scaffold will meet OSHA regulations.

It is important to understand that OSHA does not regulate how scaffold material is manufactured. The manufacture of scaffold material is covered by ANSI and ASTM specifications. OSHA 1926.450-453,1053 governs the construction of scaffolds using different types of scaffold material. The only restrictions that OSHA places on scaffold material are a 4:1 safety factor and loading values for decks, handrails and ladders.

This section is an explanation of how Excel Modular Scaffold material meets the OSHA 1926.450-453,1053 documents.

Ultimate Load
The load values listed in this technical manual reflect all Excel scaffold components have been tested to a minimum safety factor of 4:1.

1.A.) OSHA Standard requires a 4:1 safety factor for scaffold material that does not contain suspension rope.

1926.451 (a)(1)
Except as provided in paragraphs (a)(2), (a)(3), (a)(4), (a)(5) and (g) of this section, each scaffold and scaffold component shall be capable of supporting, without failure, its own weight and at least four (4) times the maximum intended load applied or transmitted to it. Section (a)(2) refers to counterweights, section (a)(3) and (a)(4), suspension rope, section (a)(5) scaffold hoist and (g) handrails.

Excel scaffold material is tested to a better than 4:1 safety factor. ISO 9001-2000 test documentation is available upon request.

2.A.) The OSHA standard for handrails is 200 lbs.

1926.451(g)(1)(iv)
Each employee on a self-contained adjustable scaffold shall be protected by a guardrail system (with minimum 200 lbs. top-rail capacity) when the platform is supported by the frame structure, and by both a personal fall arrest system and a guardrail system (with minimum 200 lbs. top-rail capacity) when the platform is supported by ropes.

All Excel scaffold handrails exceed this value.

3.A.) OSHA provides for three (3) deck-loading values 25-lbs./sq. ft., 50-lbs./sq. ft. and 75-lbs./sq. ft..

Index to Appendix A for Subpart L
1. (c) Fabricated planks and platforms may be used in lieu of solid-sawn wood planks. Maximum spans for such units shall be as recommended by the manufacturer based on the maximum intended load being calculated as follows:

<table>
<thead>
<tr>
<th>Rated Load Capacity</th>
<th>Intended Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light-Duty</td>
<td>25 lbs. per square foot applied uniformly over the entire span area.</td>
</tr>
<tr>
<td>Medium-Duty</td>
<td>50 lbs. per square foot applied uniformly over the entire span area.</td>
</tr>
<tr>
<td>Heavy-Duty</td>
<td>75 lbs. per square foot applied uniformly over the entire span area.</td>
</tr>
</tbody>
</table>

All material must be inspected prior to use! See inspection guidelines on page 112.
NOTE: Platform units used to make scaffold platforms intended for light-duty use shall be capable of supporting at least 25 lbs. per square foot applied uniformly over the entire unit-span area, or a 250 lbs. point load placed on the unit at the center of the span, whichever load produces the greater shear force.

4.A) The required load on stairs and ladders as defined by OSHA is two (2) loads of 250 lbs.

1926.1053
(a)(1) Ladders shall be capable of supporting the following loads without failure:

(a)(1)(i) Each self-supporting portable ladder: At least four (4) times the maximum intended load, except that each extra-heavy-duty type 1A metal or plastic ladder shall sustain at least 3.3 times the maximum intended load. The ability of a ladder to sustain the loads indicated in this paragraph shall be determined by applying or transmitting the requisite load to the ladder in a downward vertical direction. Ladders built and tested in conformance with the applicable provisions of Appendix A of this subpart will be deemed to meet this requirement.

(a)(1)(ii) Each portable ladder that is not self-supporting: At least four (4) times the maximum intended load, except that each extra-heavy-duty type 1A metal or plastic ladders shall sustain at least 3.3 times the maximum intended load. The ability of a ladder to sustain the loads indicated in this paragraph shall be determined by applying or transmitting the requisite load to the ladder in a downward vertical direction when the ladder is placed at an angle of 75 ½ degrees from the horizontal. Ladders built and tested in conformance with the applicable provisions of Appendix A will be deemed to meet this requirement.

Excel ladders and stairs have been tested to meet the above required loads.
All Excel Modular Scaffold equipment can be used to construct scaffolds that are 100% compliant with OSHA regulations.

When Excel Modular Scaffold material is assembled and maintained using the requirements in the Excel Modular Scaffold Standard Component Technical Manual, the completed scaffold will meet the OSHA regulations.

The following sections from the OSHA 1926.450-453,1053 documents must be followed by the end-user to ensure all scaffolds are correctly constructed and all scaffold components correctly installed and maintained.

1926.454
(b) The employer shall have each employee who is involved in erecting, disassembling, moving, operating, repairing, maintaining, or inspecting a scaffold trained by a competent person to recognize any hazards associated with the work in question. The training shall include the following topics, as applicable:

(b)(1) The nature of scaffold hazards;

(b)(2) The correct procedures for erecting, disassembling, moving, operating, repairing, inspecting, and maintaining the type of scaffold in question;

(b)(3) The design criteria, maximum intended load-carrying capacity and intended use of the scaffold;

(b)(4) Any other pertinent requirements of this subpart.

1926.451
(f)(3) Scaffolds and scaffold components shall be inspected for visible defects by a competent person before each work shift, and after any occurrence which could affect a scaffold's structural integrity.

(f)(4) Any part of a scaffold damaged or weakened such that its strength is less than that required by paragraph (a) of this section shall be immediately repaired or replaced, braced to meet those provisions, or removed from service until repaired.

1926.451
(d)(10) Ropes shall be inspected for defects by a competent person prior to each work-shift and after every occurrence which could affect a rope's integrity. Ropes shall be replaced if any of the following conditions exist:

(d)(10)(i) Any physical damage which impairs the function and strength of the rope;

(d)(10)(ii) Kinks that might impair the tracking or wrapping of rope around the drum(s) or sheave(s);

(d)(10)(iii) Six (6) randomly distributed broken wires in one (1) rope lay or three (3) broken wires in one strand in one (1) rope lay;

(d)(10)(iv) Abrasion, corrosion, scrubbing, flattening or peening causing loss of more than one-third (1/3) of the original diameter of the outside wires;

(d)(10)(v) Heat damage caused by a torch or any damage caused by contact with electrical wires;

(d)(10)(vi) Evidence that the secondary brake has been activated during an over-speed condition and has engaged the suspension rope.

1926.451
(d)(12) When wire rope clips are used on suspension scaffolds: (d)(12)(i) There shall be a minimum of three (3) wire rope clips installed, with the clips a minimum of (six) 6 rope diameters apart;

(d)(12)(ii) Clips shall be installed according to the manufacturer’s recommendations;

All material must be inspected prior to use! See inspection guidelines on page 112.
(d)(12)(iii) Clips shall be re-tightened to the manufacturer’s recommendations after the initial loading;

(d)(12)(iv) Clips shall be inspected and re-tightened to the manufacturer’s recommendations at the start of each work-shift thereafter;

(d)(12)(v) U-bolt clips shall not be used at the point of suspension for any scaffold hoist;

(d)(12)(vi) When U-bolt clips are used, the U-bolt shall be placed over the dead end of the rope, and the saddle shall be placed over the live end of the rope.

1926.1053
(b)(15) Ladders shall be inspected by a competent person for visible defects on a periodic basis and after any occurrence that could affect their safe use.

1926.1060
(a) The employer shall provide a training program for each employee using ladders and stairways, as necessary. The program shall enable each employee to recognize hazards related to ladders and stairways, and shall train each employee in the procedures to be followed to minimize these hazards.

(a)(1) The employer shall ensure each employee has been trained by a competent person in the following areas, as applicable:

(a)(1)(i) The nature of fall hazards in the work area;

(a)(1)(ii) The correct procedures for erecting, maintaining, and disassembling the fall protection systems to be used;

(a)(1)(iii) The proper construction, use, placement, and care in handling of all stairways and ladders;

(a)(1)(iv) The maximum intended load-carrying capacities of ladders; and

(a)(1)(v) The standards contained in this subpart.
EXCEL BUILDING TIPS

The purpose of this section is to share valuable information on lessons learned and scaffold erection practices to make work activities safer, easier and more efficient for the end-user.

1. Always keep the most up-to-date copy of the Excel Modular Scaffold Standard Component Technical Manual nearby. Visit the Excel website, where it can be downloaded as needed. www.excelscaffold.com/resources

2. When constructing, modifying or removing Excel scaffold material, it is very important that craft personnel handling the components in the field always wear the proper PPE (hard hat, gloves, safety glasses and safety shoes). Cut and impact resistant gloves are especially important to prevent accidental hand injuries that could be caused by the positive-locking trigger mechanism on many Excel components, which are a potential pinch point.

3. Two- (2) cup verticals should never be used or pinned in the middle of other verticals. Two- (2) cup verticals cannot have a vertical pin inserted in the top and bottom. The snap buttons will not lock on both pins and may create a drop hazard.

4. When building towers out of Excel modular material, utilize the exact same building techniques you have always used with tube and clamp and other modular systems for bracing and board deck wrap requirements.

5. Take time during your initial jobsite walk down to gather the information and measurements required to make a detailed and accurate Excel cut list for pulling material.

6. Do not try to memorize all of the different load ratings of Excel work decks. Always refer back to the Excel Modular Scaffold Standard Component Technical Manual to get the exact load ratings.

7. Do not attempt to build towers with Excel scaffold material in a tight/restricted location where it has already been proven difficult using tube and clamp. It will be end up taking longer than tube and clamp.

8. Do not use a porta-band saw mentality when building with Excel. Modular material is typically more expensive than tube and clamp and should only be cut as a last resort. If you must cut vertical legs, always cut them on the top. Keep in mind, there will be invoices for damaged material.

9. Always start tower erection with adjustable screw jacks. You must assume the grade is not level. Always place screw jacks in the middle of threads or approximately six (6) inches off the ground.

10. Always do a visual inspection of the horizontal bars as the scaffold is being constructed to make sure the triggers are properly locked in place and that they are in the up position.

11. Light tapping of the horizontal bars on top of the end connector is allowed to get the positive-locking trigger assembly properly locked into the cups/node points on the vertical leg.

12. Random field testing of Excel scaffold components by unqualified personnel is not allowed. Any concerns, issues or questions with supplemental testing should always be referred to the manufacturing facility in Walker, LA to the attention of Lance Smith at (443) 293-6352.

13. Use a level to get the tower plumb/level at the very beginning of the build, on the very first base wrap, to prevent difficulty with bar placement all the way up.

SAFETY IS ALWAYS RULE #1

All material must be inspected prior to use! See inspection guidelines on page 112.
14. Vertical leg posts are called “VPs” based on the number of cups: VP-2 is the shortest and VP-20 is the longest. They are named with even numbers—approximately one foot in length for every two cups.

Remember that VP-2s have very limited use and are only used at the very top of a vertical leg to add the final cups needed to attach the top handrail. They are not used for any other application.

15. Vertical cups (node point, moment connections) are on 5 ¾ inch centers the entire length of the vertical leg assembly for better flexibility.

16. Always have two (2) hands on components at any time, especially when setting a vertical leg on an existing vertical leg.

17. When setting a vertical leg on top of an existing leg, one hand shall support the upper leg, while the other hand depresses the spring clip. Then, slowly lower the top vertical leg down. Slightly twist the vertical until the spring clip locks into place. Do not drop the upper vertical leg onto the lower vertical pin.

18. To remove vertical legs that are connected, depress the spring clip, twist the upper vertical leg approximately 20 degrees, and with both hands lift to remove from lower vertical leg coupling pin.

19. All sizes of horizontal bars are two (2) inches shorter than the actual size, allowing for center-to-center measurement between vertical leg assemblies.

20. Two- (2) through seven- (7) foot Excel horizontal bars are all load-bearing ledgers. All other Excel horizontal bars are NON-load-bearing runners only.

21. You can board-deck out to eight- (8), nine- (9) and 10-foot runners, as long as you install one (1) diagonal brace back to the leg within 18 inches from the center of the runner.

22. Always install telescoping diagonal bracing after the first horizontal wrap, but before the second board deck wrap is put into place.

23. When passing (i.e., manual chain line) any type of telescoping brace (adjustable handrail or diagonal brace) ensure components are secured together by clip prior to upward or downward movement. This applies to adjustable toe boards, as well.

24. Diagonal extendable braces typically require a 12-cup split between the top connector on one end, and the bottom connector on the other end—eight (8) cups between the two (2) ends. Swivel braces and combination braces may fit differently.

25. Do not exceed a maximum of 14 cups (6' 6") spacing between horizontal board deck wraps from the top of lower horizontal bar wrap to the top of the next horizontal bar wrap.

26. When installing your mid-rail and top handrail, you use the following spacing from the board deck: Skip two (2) cups, hit two (2) cups, skip two (2) cups, hit two (2) cups and you will be in line with OSHA requirements. This method does not require a tape measure.

27. Standard handrail corner posts are always comprised of eight- (8) cup vertical leg assemblies (minimum eight- (8) cup leg length).

28. When installing telescoping toe boards, make sure that you install the toe board end connector in the unlocked position to the vertical leg and tighten the half clamp just enough that it won’t fall off. After you have all the toe boards installed into the toe board end connector, line everything up and tighten up the half clamp as the very last step.

29. Clean (cupless) verticals are used to get through very tight places (cable trays, piping runs, etc) where standard vertical legs with cups will not fit. Clean verticals must not exceed 69 inches.
EXCEL BUILDING TIPS (CONT’D)

30. When adding a leg in the middle of thin air (i.e., in the middle of a horizontal bearer bar using and intermediate horizontal adapter, or on top of a side bracket or cantilever) that does not go all the way to the ground, you can not exceed 25 lbs./sq. ft., unless it is supported back to a primary leg with a second diagonal brace.

31. When using truss assembly lifting rigs, always ensure you use a nylon strap that is at least four (4) inches wide or greater.

32. The landing hatchway (see custom component manual) is for a light-duty, 25 lbs./sq. ft. applications only and requires a perfectly square corner for proper installation.

33. When constructing the rapid access system (see Excel Modular Scaffold Custom Component Technical Manual), remember that once completed, the work platform is limited to a light-duty application of 25 lbs./sq. ft.

34. To properly install safety gates, rope pulley hoists and SRL adapters, always connect these Excel components to the vertical leg that goes all the way to the ground for stability.

35. When installing vertical access ladders, always remember the ears on the ladder bracket point up and are installed on the ladder first, then attached to the vertical post. Additionally, always install the vertical ladder with the male end of the ladder pointed up and the female end pointed down.

36. When installing a rope pulley hoist or SRL adapter above the top handrail, always install another complete wrap of horizontal bars at least four (4) feet above top handrail, to tie in with the rest of the tower.

37. The approved tie-off area for fall protection is above the top handrail, where two (2) horizontal bars connect to a vertical leg. Refer to the Excel Modular Scaffold Standard Component Technical Manual on how to use horizontal bars, which are approved for tie-off purposes.

38. When building hanging Excel scaffold, ensure you install a safety clamp onto the vertical leg directly above the Excel horizontal bar that will be holding the weight of the leg going down.

39. Always use handrails and step in the center of treads. Walk down the stair tower, do not run, do not skip any steps.

40. Clamp bolts should have between 40 and 65 lbs. tension. Overtightening could damage the threads, bolt or item the clamp is attached to.

41. Never use rigid beam clamps or swivel beam clamps to hang or support a scaffold with the bolts. These types of clamps should only be used for bracing a scaffold or with the flat portion supporting the load.

42. Be very careful not to overload trucks when shipping scaffold material. The maximum weight loaded should be capped at the maximum load the driver can legally carry. The user should validate the estimated weight by entering the quantity of scaffold components into a spreadsheet designed specifically to calculate and cross-check the total estimated weight. (A weight sheet can be made from our current List Price Sheet.)

43. It is a very sound work practice to get the truck driver to go directly to the closest CAT certified weigh scale after they leave the jobsite to double-check the total loaded weight. This way if the truck is overweight, the driver can quickly return to the site to have material removed, so it is in compliance with the Federal DOT requirements.

44. When shipping Excel scaffold material, take adequate time to make sure it is properly racked, stacked and banded prior to loading onto a flat bed trailer to prevent inadvertent shifting during transit.

All material must be inspected prior to use! See inspection guidelines on page 112.
EXCEL BUILDING TIPS (CONT’D)

45. When shipping Excel scaffold material, make sure to always use the proper racks and baskets. Do not make your own temporary racks out of miscellaneous scaffold parts that could come apart when loaded, unloaded or during transit, which could result in possible injury to personnel or property.

46. When loading racks and baskets of Excel scaffold material onto flat bed trailers, take adequate time to make sure those items are properly secured to the flat bed trailer using multiple ratchet tie down straps for each level and row of baskets and racks to prevent shifting during transit.

47. When unloading racks and baskets of Excel scaffold material off of flat bed trailers, inspect the load to see if any items have shifted during transit prior to removing any of the ratchet tie down straps. Ensure personnel do not stand below the rows of racks being unstrapped in case any material comes loose and falls off the truck.

48. When loading a truck and stacking racks, baskets or bundles of material that are not the same length, use the proper cribbing to ensure the load is level and will not shift during transit or unloading.

49. Casters are easy to overload when building a rolling scaffold. Scaffolds should be limited to two (2) work decks, 15 feet high when using eight- (8) inch casters and three (3) work decks, 21 feet high when using 12-inch casters.

50. Always inspect horizontal bars prior to installation to ensure the trigger and spring are installed properly and functioning correctly. If you find an end connector with a broken trigger or weak spring, do not use that component. Pull it out of service and tag it for repair. Additionally, when installing ledgers or bearers, do not let go of the bar until you verify that it is properly locked into place and that the trigger is resting in the up position.

51. Always remember when constructing Excel lifting rigs (see Custom Component Manual)—structures that use I-beams as part of a trolley movement system for transporting live loads—this application was only designed for use with a W-6 I-beam only. No other size I-beam is authorized for use in a trolley system because they will not properly fit into the trolley strap kit and could cause a potential failure.

52. When building lifting rigs or trolley movement systems (see Custom Component Manual), never utilize standard intermediate horizontal adapters to hold up the truss that will be the load bearing component where the chain fall hoist is attached. Intermediate horizontal adapters were not designed for this purpose and they can fail, causing the accidental drop of a load.

53. If you have questions regarding the contents of this manual; any ideas or suggestions on a new scaffold component design that would help make your job safer, quicker, easier; or any issues, concerns or problems regarding any Excel scaffold components, please call Lance Smith, Engineering Design at (443) 293-6352.

All material must be inspected prior to use!
See inspection guidelines on page 112.
CODE OF SAFE PRACTICES FOR EXCEL MODULAR SCAFFOLD

Excel Modular Scaffold recognizes that the scaffold industry is considered “inherently dangerous.” It is the intent of this section of the technical manual to provide pertinent guidelines for the proper, safe use, and maintenance of scaffold components and structures.

These guidelines are generalities and do not intend to cover every specific situation or component, they do not purport to be all-inclusive nor supplant other regulatory and precautionary measures for the safe use of scaffold in usual or unusual conditions. The primary codes or regulations are those promulgated by OSHA. They are Federal laws intended to provide a safe workplace by providing minimum reference guidelines upon which related activities should be carried out. It shall be the responsibility of all users/erectors to avail himself and to comply with all applicable codes, regulations, standard and common sense practices designed to purport safety in the erection, use and dismantling of scaffold.

General Guidelines Prior to Use of Scaffolding:

1. Jobsite conditions within the boundaries of a refinery, chemical plant, manufacturing plant, pulp and paper mill, power plant or construction site may vary, and each presents unique circumstances. Efficient and proper planning of each job must be done by a competent, qualified person: OSHA 1926.451 (a) (3) No scaffold shall be erected, moved, dismantled or altered except under the supervision of competent persons.

2. The jobsite should be inspected and supervision be familiarized with proper access, proximity of power or process lines, obstructions, ground conditions, openings or pits, strength of supporting structure(s), interference with other workers, overhead protection, wind/weather protection and environmental hazards. These conditions must be evaluated and adequately provided for. Also, consider the protection of people who will be passing or working beneath or around scaffold structures.

3. The work to be done and the number of persons involved must be determined to properly calculate the loading. The total loads and the supporting ground or structure must be considered when designing a scaffold structure—leg spacing, adequate sills, horizontal bracing, etc.

4. Stationary scaffolds over 125 feet in height and rolling towers over 60 feet in height must be designed by a professional engineer.

5. All equipment must be inspected to ensure it is in good condition. Damaged or deteriorated equipment should not be used and must be removed from service.

6. Scaffolds must be designed and used in accordance with the manufacturer’s specifications and recommendations. Do not intermix different brands of scaffold, unless authorized by the manufacturer, or plan to use materials in any manner other than what the manufacturer intended their design to accommodate.

7. When planning the job, remember to use common sense, sound judgment and qualified reasoning for the following:

 a.) Provide adequate foundations.
 b.) Provide proper access.
 c.) Provide proper bracing.
 d.) Provide proper handrails and toe boards.
 e.) Provide adequate decking materials.
 f.) Design scaffold structure on components to adequately compensate for all intended loads. Use only qualified personnel who are in good shape—emotionally and physically.

8. Read, understand and comply with all Federal (OSHA), State, and local codes and regulations pertaining to scaffold erection and removal.

9. When covering scaffold with plastic, tarps or other types of solid material the user must consider all wind and/or snow loading. Excel recommends that all users consult with an engineer to ensure the proper bracing for the maximum expected wind or snow loads and/or snow loading.

All material must be inspected prior to use! See inspection guidelines on page 112.
Scaffold Industry Association
Code of Safe Practices

Give to scaffold erector and user or post on job

Code of Safe Practices for
Frame Scaffolds, System Scaffolds, Tube and Clamp Scaffolds and Rolling Scaffolds

Developed for industry by Scaffold Industry Association, Inc.

It shall be the responsibility of all users to read and comply with the following common sense guidelines which are designed to promote safety in the erecting, dismantling and use of scaffolds. These guidelines do not purport to be all-inclusive, nor supplant or replace other additional safety and precautionary measures to cover usual or unusual conditions. If these guidelines in any way conflict with any Federal, State, local or other government statute or regulation, said statute or regulation shall supersede these guidelines and it shall be the responsibility of each user to comply therewith.

General Guidelines

Post these scaffolding safety guidelines in a conspicuous place and be sure that all persons who erect, dismantle or use scaffolding are aware of them.

1. Follow all Federal, State, and local codes, ordinances and regulations pertaining to scaffolding.

2. Survey the jobsite. A survey shall be made of the jobsite for hazards, such as untamped earth fills, ditches, debris, high-tension wires, unguarded openings and other hazardous conditions created by other trades. These conditions should be corrected or avoided as noted in the following sections.

3. Inspect all equipment before using. Never use any equipment that is damaged or defective in any way. Remove it from the jobsite.

4. Scaffolds must be erected in accordance with design and/or manufacturer’s recommendations.

5. Do not erect, dismantle or alter a scaffold unless under the supervision of a qualified person.

6. Do not abuse or misuse the scaffold equipment.

7. Erected scaffolds should be continually inspected by users to be sure that they are maintained in safe condition. Report any unsafe condition to your supervisor.

8. Never take chances! If in doubt regarding the safety or use of the scaffold, consult your scaffold supplier.

9. Never use equipment for purposes or in ways for which it was not intended.

10. Do not work on scaffolds if your physical condition is such that you feel dizzy or unsteady in any way.

Guidelines for Erection and Use of Scaffolds

1. Scaffold bases must be set on adequate sills or pads to prevent slipping or sinking, and fixed where required. Any part of a building or structure used to support the scaffold, shall be capable of supporting the maximum intended load to be applied.

2. Use adjusting screws or other approved methods, instead of blocking to adjust to uneven grade conditions.

3. Bracing, leveling and plumbing of frame scaffolds:
 a.) Plumb and level all scaffolds as the erection proceeds. Do not force frames or braces to fit—level the scaffold until proper fit can easily be made.
 b.) Each frame or panel shall be braced by horizontal bracing, cross bracing, diagonal bracing or any combination thereof for securing vertical members together laterally. All brace connections shall be made secure, in accordance with the manufacturer’s recommendations.

All material must be inspected prior to use!
See inspection guidelines on page 112.
4. Bracing, leveling and plumbing of tube and clamp and system scaffolds:
 a.) Posts shall be erected plumb in all directions, with the first level of runners and bearers positioned as close to the base as feasible. The distance between bearers and runners shall not exceed manufacturer's recommended procedures.
 b.) Plumb, level and tie all scaffolds as erection proceeds.
 c.) Fasten all couplers and/or connections securely before assembly of next level.
 d.) Vertical and/or horizontal diagonal bracing must be installed according to manufacturer’s recommendations.

5. Tie continuous (running) scaffolds to the wall or structure at each end and at least every 30 feet of length when scaffold height exceeds the maximum allowable free-standing dimension. Begin ties or stabilizers when the scaffold height exceeds that dimension, and repeat at vertical intervals not greater than 26 feet. The top anchor shall be placed no lower than four (4) times the base dimension from the top of the completed scaffold. Anchors must prevent scaffold from tipping into or away from wall or structure. Stabilize circular or irregular scaffolds in such a manner that the completed scaffold is secure and restrained from tipping. When scaffolds are partially- or fully-enclosed or subjected to overturning loads, specific precautions shall be taken to ensure the frequency and accuracy of ties to the wall and structure. Due to increased loads resulting from wind or overturning loads, the scaffolding component to which ties are subjected shall be checked for additional loads.

6. When free-standing scaffold towers exceed four (4) times their minimum base dimension vertically, they must be restrained from tipping. (CAL/OSHA and some government agencies require stricter ratio of 3:1.)

7. Do not erect scaffolds near electrical power lines unless proper precautions are taken. Consult the power service company for advice.

8. A means of access to all platforms shall be provided.

9. Do not use ladders or makeshift devices on top of scaffolds to increase the height.

10. Provide handrails and mid-rails at each working platform level where open sides and ends exist, and toe boards where required by code.

11. Brackets and cantilevered platforms:
 a.) Brackets for system scaffolds shall be installed and used in accordance with manufacturers’ recommendations.
 b.) Brackets for frame scaffolds shall be seated correctly, with side bracket parallel to the frames and end brackets at 90 degrees to the frames. Brackets shall not be bent or twisted from normal position. Brackets (except mobile brackets designed to carry materials) are to be used as work platforms only and shall not be used for storage of material or equipment.
 c.) Cantilevered platforms shall be designed, installed and used in accordance with manufacturers’ recommendations.

12. All scaffolding components shall be installed and used in accordance with the manufacturers' recommended procedure. Components shall not be altered in the field. Scaffold frames and their components manufactured by different companies shall not be intermixed, unless the component parts readily fit together and the resulting scaffold's structural integrity is maintained by the user.
SCAFFOLD INDUSTRY ASSOCIATION
CODE OF SAFE PRACTICES (CONT’D)

13. Planking:
 a.) Working platforms shall cover scaffold bearer as completely as possible. Only scaffold grade wood planking or fabricated planking and decking meeting scaffold use requirements shall be used.

b.) Check each plank prior to use to be sure plank is not warped, damaged, or otherwise unsafe.

c.) Planking shall have at least a 12-inch overlap and extend six (6) inches beyond center of support, or be cleated or restrained at both ends to prevent sliding off supports.

d.) Solid-sawn lumber, LVL (laminated veneer lumber) or fabricated scaffold planks and platforms (unless cleated or restrained) shall extend over their end supports not less than six (6) inches nor more than 18 inches. This overhang should not be used as a work platform.

14. For putlogs and trusses the following additional guidelines apply:
 a.) Do not cantilever or extend putlogs/trusses as side brackets without thorough consideration for loads to be applied.

b.) Putlogs/trusses should be extended at least six (6) inches beyond point of support.

c.) Place recommended bracing between putlogs/trusses when the span of putlog/truss is more than 12 feet.

15. For rolling scaffolds, the following additional guidelines apply:
 a.) Riding a rolling scaffold is very hazardous. The Scaffold Industry Association does not recommend, nor encourage this practice. However, if you choose to do so, be sure to follow all State, Federal or other governmental guidelines.

b.) Casters with plain stems shall be attached to the panel or adjustment screw by pins or other suitable means.

c.) No more than 12 inches of the screw jack shall extend between the bottom of the adjusting nut and the top of the caster.

d.) Wheels or casters shall be provided with a locking means to prevent caster rotation and scaffold movement and kept locked.

e.) Joints shall be restrained from separation.

f.) Use horizontal diagonal bracing near the bottom and at 20-foot intervals measured from the rolling surface.

g.) Do not use brackets or other platform extensions without compensating for the overturning effect.

h.) The platform height of a rolling scaffold must not exceed four (4) times the smallest base. Government agencies require a stricter ratio of 3:1).

i.) Cleat or secure all planks.

j.) Secure or remove all materials and equipment from platform before moving.

k.) Do not attempt to move a rolling scaffold without sufficient help. Watch out for holes in floor and overhead obstructions. Stabilize against tipping.

All material must be inspected prior to use!
See inspection guidelines on page 112.
16. Safe use of scaffold:

 a.) Prior to use, inspect scaffold to ensure it has not been altered and is in safe working condition.

 b.) Erected scaffolds and platforms should be inspected continuously by those using them.

 c.) Exercise caution when entering or leaving a work platform.

 d.) Do not overload scaffold. Follow manufacturer’s safe working load recommendations.

 e.) Do not jump onto planks or platforms.

 f.) Do not use ladders or makeshift devices on top of working platforms to increase the height or provide access from above.

 g.) Climb in access areas only and USE BOTH HANDS.

When Dismantling Scaffolding the Following Additional Guidelines Apply:

1. Check to ensure scaffolding has not been structurally altered in a way which would make it unsafe, and if it has, reconstruct where necessary before commencing with dismantling procedures. This includes all scaffold ties.

2. Visually inspect planks prior to dismantling to be sure they are safe.

3. Consideration must be given as to the effect removal of a component will have on the rest of the scaffold prior to that component’s removal.

4. Do not accumulate excess components or equipment on the level being dismantled.

5. Do not remove ties until scaffold above has been removed (dismantled).

6. Lower dismantled components in an orderly manner. Do not throw off of scaffold.

7. Dismantled equipment should be stockpiled in an orderly manner.

8. Follow erection procedures and user manuals.

These safety guidelines (Codes of Safe Practice) set forth common sense procedures for safely erecting, dismantling and using scaffolding equipment. However, equipment and scaffolding systems differ, and accordingly, reference must always be made to the instructions and procedures of the supplier and/or manufacturer of the equipment.

Since field conditions vary and are beyond the control of the Scaffold Industry Association, safe and proper use of scaffolding is the sole responsibility of the user.

Reference must always be made to the instructions and procedures of the supplier and/or manufacturer of the equipment.
SCAFFOLD INSPECTION GUIDELINES

During manufacture, Excel Modular Scaffold material goes through a very intensive inspection program. Each part is handled and inspected two (2) times. Items are then randomly selected for non-destructive testing and a final inspection is performed. Further visual inspection is performed as the material is loaded for shipment to any jobsite.

Even with this intensive inspection system, it is still the responsibility of the end-user to ensure each piece of scaffold material installed is free of defects.

Scaffolds are usually built by one craft group and then work is performed on and around the scaffold by many different craft groups. During normal use, it is possible that scaffold components will become damaged. The following are general guidelines to aid the end-user in identifying potential problems with Excel Modular Scaffold material. This list is by no means all-inclusive, and is provided only as a general guide.

All components must be checked every time they are used, prior to installation or removal, for any visible damage, missing or broken welds, deformed or dented parts that may affect the strength of the item, saw marks, welding burn marks, excessive rust or chemical damage.

WARNING: Material must be removed from service any time rust or chemical damage has affected the strength or fit of the material. This is especially critical with the trigger and spring assembly.

End-users should immediately contact Excel Modular Scaffold and Leasing Corporation at (225) 777-4157 regarding any abnormal issues or concerns.

1. For all items with end connectors, the end connector must be undamaged and the trigger unbroken. Look for missing bolts or nuts that hold in the trigger or spring. Examine the trigger mechanism and ensure the trigger and spring are functioning correctly. Check to ensure the trigger/spring is free of weld splatter, gunnite and other products which could affect the smooth operation of the trigger/spring. Ensure the fit of the end connector to the vertical post is not excessively loose due to damage to the end connector.

2. Adjustable bearers must be free of any visible damage, missing or broken welds on the end connectors or bent or deformed tubing. The tubing must also be free of any saw marks, welding burn marks, large dents or other damage which may affect the strength of the member. The locking bolt must be installed and working correctly to prevent movement.

3. Adjustable braces must be free of any visible damage, bent or deformed tubing, missing or broken welds on the end connectors or clamp assemblies. The tubing must also be free of any saw marks, welding burn marks, large dents or other damage which may affect the strength of the member. The clamp rivet must be examined for wear or bending and the bolt threads must be free of defects. Locking pins must be installed and functional.

4. Beam clamps—rigid and swivel—must be free of any visible damage, saw marks, welding burn marks, large dents, cracks, damaged bolt threads, loose or damaged rivets or other damage. The clamp must be examined for wear, cracking or bending and the bolt threads must be free of defects. Special attention must be given to the radius area of the clamp to ensure there are no cracks in the bend area.

5. Casters must be free of any visible damage. The caster must be round, the pin assembly must be straight, and all bolts and nuts must be present.

All material must be inspected prior to use! See inspection guidelines on page 112.
SCAFFOLD INSPECTION GUIDELINES

6. **Clean verticals** must be free of any visible damage. The tubing must also be free of any saw marks, welding burn marks, large dents or other damage which may affect the strength of the member.

7. **Diagonal pin braces** must be free of any visible damage, bent or deformed tubing, missing or broken welds on the clamp assemblies. The tubing must also be free of any saw marks, welding burn marks, large dents or other damage which may affect the strength of the member. The clamp rivet must be examined for wear or bending and the bolt threads must be free of defects.

8. **Horizontals** must be free of any visible damage, missing or broken welds on the end connectors or bent or deformed tubing. The tubing must also be free of any saw marks, welding burn marks, large dents or other damage which may affect the strength of the member.

9. **Horizontal tie-off support** must be inspected daily before use. They must be free of any visible damage, saw marks, welding burn marks, large dents or other damage. The clamp rivets must be examined for wear or bending and the bolt threads must be free of defects. The horizontal bearing cups must fit snugly against the horizontal members and must be examined for bends, cracks or broken welds.

10. **Intermediate horizontal adapters** must be free of any visible damage, missing or broken welds on the cups, bent or deformed cups, bent or deformed top plate, missing or bent top pin. The part must also be free from any saw marks, welding burn marks, or other damage which may affect the strength of the member.

11. **Ladders** must be free of any visible damage, missing or broken welds on the rungs, bent or deformed tubing or rungs. The side rails and rungs must also be free of any saw marks, welding burn marks, large dents or other damage which may affect the strength of the members.

12. **Ladder brackets** must be free of any visible damage. The clamp rivet must be examined for wear or bending and the clamp bolt threads must be free of defects.

13. **Metal boards** must be free of any visible damage, creases in the board surface, bending of the support runners, excessive rust or chemical damage, missing or broken welds on the cleats. Board strength is directly affected by the cleats and the side rails. Ensure the cleats are undamaged and all welds are intact, and ensure the side rails are straight and undamaged.

14. **Rope pulley hoists** must be free of any visible damage, missing or broken welds. The tubing must be free of any saw marks, welding burn marks, large dents or other damage. Special attention must be placed on inspecting the end connector where it fits into the cup and the trigger to ensure the hoist fits snugly onto the vertical cups and that there is no visible damage or bending. The clamp rivet must be examined for wear or bending and the bolt threads must be free of defects. Locking pins must be installed and functional. Any attached pulley and rope must be inspected according to OSHA guidelines and the manufacturer’s recommendations.

15. **Safety gates** must be free of any visible damage, missing or broken welds. The tubing must be free of any saw marks, welding burn marks, large dents or other damage. The clamp rivet must be examined for wear or bending and the clamp bolt threads must be free of defects.

16. **Safety gate handrails** must be free of any visible damage, missing or broken welds. Special attention must be placed on inspecting the end connector where it fits into the cup and the trigger to ensure it fits snugly onto the vertical cups and that there is no visible damage or bending.

All material must be inspected prior to use! See inspection guidelines on page 112.
17. **Safety outriggers** must be free of any visible damage, missing or broken welds on the end connectors or cups, bent or deformed tubing. The tubing must also be free of any saw marks, welding burn marks, large dents or other damage which may affect the strength of the member.

18. **Screw jacks and swivel jacks** must be checked for proper operation and for damaged threads or nuts.

19. **Shoring jacks and shoring heads** require the same attention as the shoring post. Additionally, the screw connections must be checked for broken welds or damaged threads.

20. **Shoring posts** require special attention because of the loads they are required to support. They must be free of any visible damage, missing or broken welds on the cups, bent or deformed cups, or bent or deformed tubing. The tubing must also be free of any saw marks, welding burn marks, large dents or other damage which may affect the strength of the member. The members must be checked to ensure they are straight and plumb.

21. **Side brackets** must be free of any visible damage, missing or broken welds on the end connectors or cups, bent or deformed tubing. The tubing must also be free of any saw marks, welding burn marks, large dents or other damage which may affect the strength of the member. Special attention must be placed on inspecting the end connector where it fits into the cup and the trigger to ensure the bracket fits snugly onto the vertical cups, and that there is no visible damage or bending.

22. **Toe boards and toe board connectors** must be free of any visible damage, saw marks, welding burn marks, large dents or other damage. The clamp rivets must be examined for wear or bending and the bolt threads must be free of defects. The snap buttons must be installed and working correctly.

23. **Trusses** must be free of any visible damage, missing or broken welds on the end connectors or bent or deformed tubing. The tubing must also be free of any saw marks, welding burn marks, large dents or other damage which may affect the strength of the member.

24. **Stair system parts** must be free of any visible damage, missing or broken welds, missing tread lock down clips or missing locking bolts. Stair stringers must be straight and undamaged. The tread locking clips must be able to lock down the boards when they are in place and must have the snap buttons installed. The stair base must have all bolts for locking the foot in place and the bolts must be in good working condition. The end hooks must be examined for bends, cracks or broken welds.

25. **Tube and clamp** material has been manufactured by many different vendors. When the vendor can be determined, always use their guidelines for inspection and maintenance. The tubing must be free of any visible damage, saw marks, welding burn marks, large dents or other damage. The tube ends must be securely attached to the tubing and must be undamaged. The clamp rivet must be examined for wear or bending and the bolt threads must be free of defects.

26. **Verticals** must be free of any visible damage, missing or broken welds on the cups, bent or deformed cups, or bent or deformed tubing. The tubing must also be free of any saw marks, welding burn marks, large dents or other damage which may affect the strength of the member.
SCAFFOLD INSPECTION GUIDELINES

The following components can be found in the Excel Modular Scaffold Custom and Specialty Component Technical Manual.

1. **Boiler equipment** must be free of any visible damage, missing or broken welds. The tubing and beams must be free of any saw marks, welding burn marks, large dents or other damage. Special attention must be placed on the shoring beams and ladders to ensure they are undamaged.

2. **Lifting devices** must be inspected before use. They must be free of any visible damage, saw marks, welding burn marks, large dents or other damage. The bolts must be tightened and free of defects. The vertical the lifting device is attached to must be inspected, and all vertical locking clamps installed at the joints of the vertical.

3. **Rapid access equipment** must be free of any visible damage, saw marks, welding burn marks, large dents or other damage. The clamp rivets must be examined for wear or bending and the bolt threads must be free of defects. Special attention must be given to the ladder hooks to ensure they are unbent and free of damage.

4. **Roof adapters** must be free of any visible damage or missing or broken welds. Special attention must be placed on inspecting the end connector where it fits into the cup and the trigger to ensure it fits snugly onto the vertical cups and that there is no visible damage or bending.

5. **SRL adapter parts** must be inspected daily before use. They must be free of any visible damage. The clamp rivet must be examined for wear or bending and the bolt threads must be free of defects. The adapter clamp must be free of any bending (it must be discarded if used to prevent a fall or damaged), the bolts must free of defects. The wire rope must be inspected as required by OSHA. Wire rope shall be replaced if the rope has any physical damage which impairs its function and strength—six (6) randomly distributed broken wires in one rope lay or three (3) broken wires in one strand in one rope lay, abrasion, corrosion, scrubbing, flattening or peening causing loss of more than one-third (1/3) of the original diameter of the outside wires, evidence of any heat damage resulting from a torch or any damage caused by contact with electrical wires.

6. **Trolley beams** must be free of any visible damage. They must not contain saw marks, welding burn marks, large dents or other damage which may affect the strength of the member. The bottom web, which supports the trolley, must be free of dents or bends.

7. **Vertical locking clamp** must be inspected before use. They must be free of any visible damage, saw marks, welding burn marks, large dents or other damage. The clamp rivets must be examined for wear or bending and the bolt threads must be free of defects.

All components must be checked every time they are used, prior to installation or removal, for any visible damage, missing or broken welds, deformed or dented parts that may affect the strength of the item, saw marks, welding burn marks, excessive rust or chemical damage.

All material must be inspected prior to use!
See inspection guidelines on page 112.
REPAIR GUIDELINES THAT MUST BE FOLLOWED BY EXCEL END-USERS

Repairs and maintenance activities that are authorized to be performed in the field:

1. Replacement of trigger assembly in Excel components (i.e., trusses, horizontal bars, side brackets, etc.).
 — Must order replacement triggers in advance from Excel.

2. Replacement of spring assembly in Excel components (i.e., trusses, horizontal bars, side brackets, etc.).
 — Must order replacement springs in advance from Excel.

3. Replacement of nuts and bolts that hold springs and triggers in Excel components.
 — Must order replacement nuts and bolts in advance from Excel.

4. Replacement of vertical pins in vertical legs and side brackets.
 — Must order replacement vertical pins in advance from Excel.

5. Replacement of snap buttons in vertical pins, stair stringers or other components.
 — Must order replacement snap buttons in advance from Excel.

6. Replacement of coupling pin snap buttons in vertical legs and side brackets.
 — Must order replacement vertical pins in advance from Excel.

7. Replacement of locking pins in diagonal braces components.
 — Must order replacement locking pins in advance from Excel.

8. Minor bending/straightening of the ladder bracket.
 — Ladder brackets can become bent in or out so that they will not correctly fit the ladders. Ladder brackets may be bent straight if the bend required is less than 1/2 inch.

Repairs and maintenance activities that are NOT authorized to be performed in the field:

1. ANY modification to Excel System Scaffold.

2. Re-galvanizing Excel components that have been corroded or sand blasted.

3. Straightening vertical leg assemblies that have been bent.

4. Shortening vertical leg assemblies by cutting.

5. Straightening horizontal bar assemblies that have been bent.

6. Shortening horizontal bar assemblies by cutting.

7. Any repairs to trolley movement system components.

8. Any repairs to truss components.

9. Any repairs to metal deck board components.

10. Any repairs to stair stringer components. (With the exception of replacing the snap button in the tread lock down).

11. Any repairs to rope pulley hoist components.

12. Any welding to any component.

All material that is NOT authorized to be repaired in the field must be returned back to the manufacturer as damaged material.
SCAFFOLD MATERIAL LOADING AND SHIPPING GUIDELINES

These are Excel’s company goals regarding the shipment and receipt of Excel scaffold material. Clients are requested to comply with these common sense requirements when they are preparing scaffold shipments for return to Excel.

1. Upon completion of the project, Excel requires all scaffold material be properly segregated and racked by individual component. Prior to being released for transport, customers must have completed the following actions to correctly prepare the scaffold material for shipment back to Excel:
 a.) Material must be properly segregated into racks or baskets by size and component.
 b.) Material must be banded to the rack to ensure it will not shift or break loose while in transit.
 c.) When loading requires any other racks, baskets or bundled material that are not the same length to be stacked, cribbing must be used between the racks, baskets or material to ensure it is level and will not shift during transport or unloading.
 d.) Never load racks of steel planks or toe boards on the back of the truck, as they can come out easily.
 d.) Material must be properly counted and a shipping ticket completed for each truckload.
 e.) Advanced copies of shipping tickets must be sent to Excel.
 f.) Shipments must be coordinated in advance with our Excel warehouse.
 g.) Do not schedule material for shipment until all items have been completed.

2. Have proper client authorization request and release paperwork listing material.
 a.) Computer load calculations are completed for total weight verification prior to loading material.
 b.) Complete initial pre-loading diagrams to ensure how and where material will be placed on truck.
 c.) Complete all shipment, tractor, trailer and driver inspection paperwork.
 d.) You should always have material pulled and staged prior to truck arrival.
 e.) For safety reasons, always use a two-man team when loading scaffold material shipments.

3. Material loading:
 a.) Do not load trucks early in the morning or late at night and in instances where there is not enough light to properly and safely see.
 b.) Do not let the tractor operator/driver get in the way while you are loading scaffold material.
 c.) Require driver to wear hard hat when forklifts are operating during loading and unloading.

4. Prior to loading/releasing incoming or outgoing shipments:
 a.) Take pictures of all incoming and outgoing shipments.
 b.) Use a dry erase board or other means to show date, time, ticket number, etc.
 c.) Ensure both the truck and trailer have current registration tags before loading.
 d.) Ensure the truck driver has a valid driver’s license before loading.
 e.) Trailer and tractor should have good tires (not bald) on all axles before loading.
 f.) Ensure the truck driver has all of the required insurance paperwork before loading.
 g.) Driver should be observed for any obvious FFD impairment problems.
 h.) If all conditions cannot be properly met, do not load the truck.
 i.) Once material is loaded onto the trailer, make sure it is properly secured by the driver.

Material must be counted, properly segregated into racks or baskets by size and component and banded prior to loading on truck.

All material must be inspected prior to use! See inspection guidelines on page 112.
SCAFFOLD MATERIAL LOADING
AND SHIPPING GUIDELINES

j.) Ensure the correct scaffold material components
and sizes are actually on the trailer.
k.) Ensure the driver has been given copies of all
shipping paperwork before he is released.
l.) Ensure the driver fully understands where he
is going and when he is expected to arrive.
m.) When required, instruct the driver to
weigh his truck at the nearest scales
to determine if he is overloaded.

5. When loading requires horizontal racks that are
not the same length to be stacked (see picture),
the following additional guidelines MUST be met:
a.) The rack with the longest horizontal
must be placed on the truck first.
b.) The rack with the shortest horizontal must
be placed on top, so that one set of rack
feet sit on top of the lower rack's post.
c.) Cribbing must be placed on top of the
horizontal, under the other set of rack feet.
d.) The cribbing must be secured from movement
by using cleats, banding or other means.
e.) The two racks must be banded together
to prevent the top rack from dislodging.
f.) If all of the above conditions cannot be
properly met, do not load or ship the material.

6. Have an independent (two (2) different people)
double-check to verify the following:
a.) Ensure the truck is not overweight.
b.) Maximum material loaded height above
the ground must not exceed 13.5 feet.
c.) Material loaded must not extend
beyond the width of trailer.

7. Notify the receiving organization that the
material has departed and is in transit.
a.) Ensure the load will arrive at the designated
location during normal working hours/days.
b.) Fax a copy of exactly what material
is being shipped to Excel.

c.) Verify the location is aware that the
shipment is en route and that someone
will be there to receive and unload it.

8. Charges for return of Excel material not properly
sorted and racked.

The goal is for all Excel material to be returned
in the same manner in which it was shipped.
Properly prepared Excel shipments make it
easier, safer, quicker and more accurate for
all involved parties in the physical inventory
and return process. If for any reason the Excel
material is not returned as requested, Excel
will take the following corrective actions:
a.) Breaking down of any racks or baskets of
material that were improperly loaded.
b.) Properly re-racking as required by
our quality assurance program.
c.) Tracking all of the additional man-hours/
handling charges associated with re-racking
material in order to store the components long
term, awaiting future client orders and shipment.
d.) Excel will invoice the customer for the additional
charges incurred with correcting the shipment.
e.) Excel will also invoice the customer for
any fees and/or penalties related to
improperly loaded or overloaded return
shipments assessed to and paid by Excel.
SCAFFOLD MATERIAL LOADING AND SHIPPING GUIDELINES

9. Excel material quantity disputes and final inventory reconciliation.
 a.) Material shipped from Excel warehouse facilities undergoes stringent quantity verification in accordance with Excel’s ISO 9001 program. All outgoing and incoming transactions are subject to two independent verification counts. If needed, a third independent count is performed to reconcile any discrepancies before final shipping or receipt.
 b.) All shipments should be verified immediately upon receipt of the material. Any discrepancies must be reported to the Excel warehouse facility immediately, before any material is utilized. Excel will have 24 hours after receiving a discrepancy notice to make arrangements for an independent verification, or to submit pertinent information.

 During this period the material must be segregated, not moved or utilized for erection, allowing Excel the ability to respond. Material will not be subjected to rent during this period. At the end of this period, if Excel does not independently verify the counts, the material may be used and the quantities reported by the client will be utilized in the inventory.
 c.) Upon receipt of the material at the Excel warehouse facility, the scaffold material is again subjected to two (2) independent verification counts, and if needed a third reconciling count. Any discrepancies between the counts and the quantity reflected on the client-prepared shipping ticket faxed to the Excel warehouse facility will be reported to the client immediately. The client will have 24 hours after receiving a discrepancy notice to make arrangements for an independent verification. Excel will segregate and hold the material awaiting the client’s decision. After this period, if the client does not independently verify the counts, the material will be returned to stock and the Excel counts will be utilized in the inventory.
 d.) At the end of the project, all concerned parties will review the final inventory status, which is based on each shipping ticket (inbound and outbound). Excel will invoice the client for any material shortages or damages which would be included as part of the final closeout invoice.

Always call Excel in advance of shipping if you have any questions on the above guidelines.

The Walker, LA phone number is (225) 777-4157.
MATERIAL RACKING GUIDE

This page is intended as a quick reference guide for many commonly used components. The top tables show how many of each component come per rack. The bottom table shows how many pans are used per bar size.

Verticals Per Rack

<table>
<thead>
<tr>
<th>Item</th>
<th>Racking</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>VP2</td>
<td>FWB</td>
<td>500</td>
</tr>
<tr>
<td>VP4</td>
<td>SSR</td>
<td>375</td>
</tr>
<tr>
<td>VP6</td>
<td>SSR</td>
<td>250</td>
</tr>
<tr>
<td>VP8</td>
<td>SSR</td>
<td>250</td>
</tr>
<tr>
<td>VP10</td>
<td>SSR</td>
<td>250</td>
</tr>
<tr>
<td>VP12</td>
<td>SSR</td>
<td>125</td>
</tr>
<tr>
<td>VP14</td>
<td>SSR</td>
<td>125</td>
</tr>
<tr>
<td>VP20</td>
<td>SSR</td>
<td>125</td>
</tr>
</tbody>
</table>

Horizontals Per Rack

<table>
<thead>
<tr>
<th>Item</th>
<th>Racking</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB24</td>
<td>HR1(2)</td>
<td>100</td>
</tr>
<tr>
<td>PB32</td>
<td>HR1(2)</td>
<td>100</td>
</tr>
<tr>
<td>PB36</td>
<td>HR1(2)</td>
<td>100</td>
</tr>
<tr>
<td>PB42</td>
<td>HR1(2)</td>
<td>100</td>
</tr>
<tr>
<td>PB48</td>
<td>HR1(2)</td>
<td>100</td>
</tr>
<tr>
<td>PB60</td>
<td>HR1(2)</td>
<td>100</td>
</tr>
<tr>
<td>PB72</td>
<td>HR1(2)</td>
<td>100</td>
</tr>
<tr>
<td>PB84</td>
<td>HR1(2)</td>
<td>100</td>
</tr>
<tr>
<td>HL96</td>
<td>HR1(2)</td>
<td>100</td>
</tr>
<tr>
<td>HL108</td>
<td>HR1(2)</td>
<td>100</td>
</tr>
<tr>
<td>HL120</td>
<td>HR1(2)</td>
<td>100</td>
</tr>
<tr>
<td>TPB24</td>
<td>HR1(2)</td>
<td>100</td>
</tr>
<tr>
<td>TPB36</td>
<td>HR1(2)</td>
<td>100</td>
</tr>
<tr>
<td>TPB48</td>
<td>HR1(2)</td>
<td>100</td>
</tr>
<tr>
<td>TPB60</td>
<td>HR1(2)</td>
<td>100</td>
</tr>
<tr>
<td>TPB72</td>
<td>HR1(2)</td>
<td>100</td>
</tr>
<tr>
<td>TPB84</td>
<td>HR1(2)</td>
<td>100</td>
</tr>
<tr>
<td>THL96</td>
<td>HR1(2)</td>
<td>100</td>
</tr>
</tbody>
</table>

Ladders Per Rack

<table>
<thead>
<tr>
<th>Item</th>
<th>Racking</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA3</td>
<td>FWB</td>
<td>60</td>
</tr>
<tr>
<td>LA4</td>
<td>SSR</td>
<td>45</td>
</tr>
<tr>
<td>LA5</td>
<td>SSR</td>
<td>45</td>
</tr>
<tr>
<td>LA7</td>
<td>SSR</td>
<td>45</td>
</tr>
<tr>
<td>LA8</td>
<td>SSR</td>
<td>45</td>
</tr>
<tr>
<td>LA9</td>
<td>SSR</td>
<td>45</td>
</tr>
<tr>
<td>LA10</td>
<td>SSR</td>
<td>45</td>
</tr>
</tbody>
</table>

Steel Planks Per Rack

<table>
<thead>
<tr>
<th>Item</th>
<th>Racking</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP24</td>
<td>FWB</td>
<td>100</td>
</tr>
<tr>
<td>SP32</td>
<td>FWB</td>
<td>80</td>
</tr>
<tr>
<td>SP36</td>
<td>FWB</td>
<td>80</td>
</tr>
<tr>
<td>SP42</td>
<td>FWB</td>
<td>80</td>
</tr>
<tr>
<td>SP48</td>
<td>SSR</td>
<td>56/64</td>
</tr>
<tr>
<td>SP60</td>
<td>SSR</td>
<td>56/64</td>
</tr>
<tr>
<td>SP72</td>
<td>SSR</td>
<td>56/64</td>
</tr>
<tr>
<td>SP84</td>
<td>SSR</td>
<td>56/64</td>
</tr>
<tr>
<td>SP96</td>
<td>SSR</td>
<td>56/64</td>
</tr>
<tr>
<td>SP108</td>
<td>SSR</td>
<td>56/64</td>
</tr>
<tr>
<td>SP120</td>
<td>SSR</td>
<td>56/64</td>
</tr>
</tbody>
</table>

Trusses Per Rack

<table>
<thead>
<tr>
<th>Item</th>
<th>Racking</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR4</td>
<td>SSR</td>
<td>50</td>
</tr>
<tr>
<td>TR5</td>
<td>SSR</td>
<td>50</td>
</tr>
<tr>
<td>TR6</td>
<td>SSR</td>
<td>50</td>
</tr>
<tr>
<td>TR7</td>
<td>SSR</td>
<td>30</td>
</tr>
<tr>
<td>TR8</td>
<td>SSR</td>
<td>30</td>
</tr>
<tr>
<td>TR9</td>
<td>SSR</td>
<td>30</td>
</tr>
<tr>
<td>TR10</td>
<td>SSR</td>
<td>30</td>
</tr>
<tr>
<td>TR12</td>
<td>SSR</td>
<td>30</td>
</tr>
<tr>
<td>TR14</td>
<td>SSR</td>
<td>30</td>
</tr>
<tr>
<td>TR16</td>
<td>SSR</td>
<td>30</td>
</tr>
<tr>
<td>TR18</td>
<td>SSR</td>
<td>30</td>
</tr>
</tbody>
</table>

Trusses Per Rack

<table>
<thead>
<tr>
<th>Item</th>
<th>Racking</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR4</td>
<td>SSR</td>
<td>50</td>
</tr>
<tr>
<td>TR5</td>
<td>SSR</td>
<td>50</td>
</tr>
<tr>
<td>TR6</td>
<td>SSR</td>
<td>50</td>
</tr>
<tr>
<td>TR7</td>
<td>SSR</td>
<td>30</td>
</tr>
<tr>
<td>TR8</td>
<td>SSR</td>
<td>30</td>
</tr>
<tr>
<td>TR9</td>
<td>SSR</td>
<td>30</td>
</tr>
<tr>
<td>TR10</td>
<td>SSR</td>
<td>30</td>
</tr>
<tr>
<td>TR12</td>
<td>SSR</td>
<td>30</td>
</tr>
<tr>
<td>TR14</td>
<td>SSR</td>
<td>30</td>
</tr>
<tr>
<td>TR16</td>
<td>SSR</td>
<td>30</td>
</tr>
<tr>
<td>TR18</td>
<td>SSR</td>
<td>30</td>
</tr>
</tbody>
</table>

Pans Per Bar

<table>
<thead>
<tr>
<th>Bar Size</th>
<th>2'</th>
<th>32"</th>
<th>3'</th>
<th>42"</th>
<th>4'</th>
<th>5'</th>
<th>6'</th>
<th>7'</th>
<th>8'</th>
<th>9'</th>
<th>10'</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-Inch Pan</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>6-Inch Pan</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>—</td>
<td>2</td>
<td>1</td>
<td>—</td>
<td>2</td>
<td>1</td>
<td>—</td>
</tr>
</tbody>
</table>
GENERAL ASSEMBLY INSTRUCTIONS

A — Mudsill
B — Leveling Jack Maximum Extension, 12” Exposed Thread
C — Bottom Runner at Bottom Two (2) Cups
D — Diagonal Brace
E — Plank Bearer
F — Decking

G — Midrail at 4th Cup from Bearer
H — Handrail at 8th Cup from Bearer
J — Access Ladder
K — Ladder Brackets
L — Safety Gate
M — Toe Boards on Open Sides